Extreme Heat and Directed Innovation

Enjie (Jack) Ma Cornell University

Sept 29, 2025

Intro

- Impact of Climate Change is multifaceted: agriculture, human capital, labor supply and productivity, and human health
- Adaptation now sits at the center of the Climate Change agenda
- Yet the role of innovation as an adaptation margin remains underexplored

Introduction 1/22

Intro

- Impact of Climate Change is multifaceted: agriculture, human capital, labor supply and productivity, and human health
- Adaptation now sits at the center of the Climate Change agenda
- Yet the role of innovation as an adaptation margin remains underexplored

- This paper asks the following questions
 - 1. How does innovation respond to extreme heat shock?
 - 2. What is the role of innovation in adaptation to climate change?

Introduction 1/22

This Paper

- Examines how extreme heat affects the direction of innovation for 9 EU countries from 2000-2020
- Provides new empirical evidence that firms use innovation as an adaptation margin to extreme heat outside of agriculture
- Constructs a Firm-level Production and Innovation Dataset: ORBIS + OECD REGPAT

Introduction 2/22

This Paper

- Examines how extreme heat affects the direction of innovation for 9 EU countries from 2000-2020
- Provides new empirical evidence that firms use innovation as an adaptation margin to extreme heat outside of agriculture
- Constructs a Firm-level Production and Innovation Dataset: ORBIS + OECD REGPAT

Main Findings

- 1. Heat-to-productivity damage is concentrated among labor-intensive firms.
- 2. Extreme heat induces capital-deepening adaptation: more capital-intensive technology and more labor-saving patents
- 3. Heat-induced innovation mitigates the productivity damage by 28%

→ Key Facts

Introduction 2/22

Contribution

- 1. New empirical evidence on how the direction of Innovation and technology change respond to climate shocks
 - Impact of Climate Change on Firms and Labor Productivity (Zivin and Neidell 2014, Somanathan et al 2021, Zhang et al 2018, Long and Wang 2025)
- 2. First paper that evaluates the role of innovation as an adaptation margin to climate change outside of agriculture
 - Measuring Climate Adaptation (Burke and Emerick 2016, Carleton and Hsiang 2016, Burke et al 2024)
 - Agriculture Evidence (Moscona and Sastry 2023)

Introduction 3/22

Data

- Heat Shock: Climate (NOAA PSL)
 - Daily maximum temperature >> BINS vs CDD
 - 1. 8 TMAX BINS * Bin Distribution Shift * Hot Days Map
 - 2. Cooling Degree Days (CDD) above 85°F >> ACDD
- Firm: ORBIS
 - Firm-level balance sheet data
 - revenue/value added, labor cost, capital, employment. material costs, lon/lat
 - Production Function Estimation: estimate firm TFP and Output Elasticity
- Innovation: OECD REGPAT (*) Orbis-REGPAT Matching (*) Classification
 - EPO Patent application data, regionalized to NUTS-3
 - applicant names, addresses, CPC/IPC code, patent titles

Data 4/22

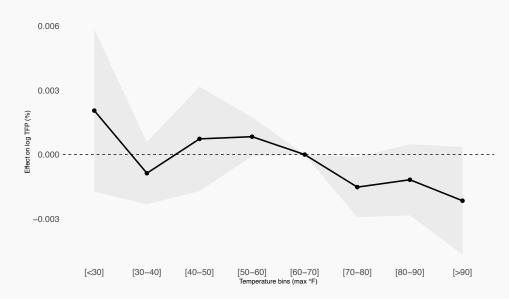
Data: Final Sample

Final Sample

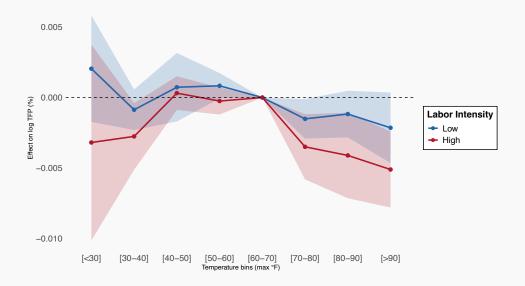
- Heat-Exposed Sectors:
 B(Mining), C(Manufacturing), D(Power&Utilities), F(Construction)
- 8.3 million firm-year observations (2000–2020)
- 9 European countries: Austria, Belgium, Denmark, Germany, Spain, Finland, France, Italy, Luxembourg

Data 5/22

Descriptive Evidence on Factor-Biasedness of Heat Shock


$$\ln(\mathsf{TFP})_{it} = \sum_{b \neq [60-70^{\circ}F)} \beta_b \operatorname{Bin}_{it}^b + \gamma \operatorname{Prec}_{it} + \delta_i + \eta_{c(i),t} + \zeta_{s(i),t} + \varepsilon_{it},$$

- **Bins**: daily max 10 °F bins ([< 30]...[> 90]); omitted [60,70)°F
- Climate Controls: precipitation
- FE: firm; country×year; sector×year. SE clustered by firm and country-year
- Interpretation: $\beta_b = percent$ change from +1 day in bin b vs. $[60, 70)^{\circ}F$
- Heterogeneity: High vs Low Labor Intensity firms within industry (based on Output Elasticity w.r.t labor estimates)


» PFF

→ Heat Level Map

Mild Negative Avg Effect

Labor-Intensive Firms Suffer More Productivity Damage

Evidence of Labor-Biased Heat Shock

- Productivity losses are concentrated among labor-intensive firms
 - Same pattern for cross-industry
- Similar results from market share: labor-intensive firms lose market share

→ Market Share Result

• Results are robust to controls of firm sizes

Evidence of Labor-Biased Heat Shock

- Productivity losses are concentrated among labor-intensive firms
 - Same pattern for cross-industry
- Similar results from market share: labor-intensive firms lose market share

→ Market Share Result

- Results are robust to controls of firm sizes
- ⇒ extreme heat is labor-biased: heat hurts labor-intensive firms more

Evidence of Labor-Biased Heat Shock

- Productivity losses are concentrated among labor-intensive firms
 - Same pattern for cross-industry
- Similar results from market share: labor-intensive firms lose market share

→ Market Share Result

- Results are robust to controls of firm sizes
- ⇒ extreme heat is labor-biased: heat hurts labor-intensive firms more

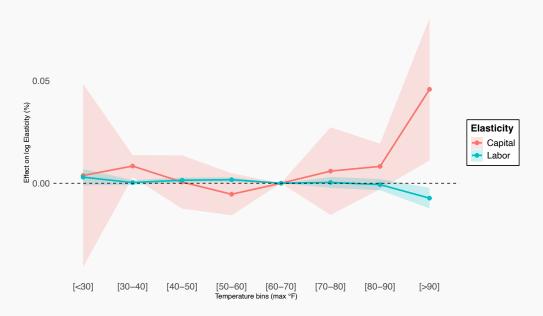
But how do firms respond to such shock? What are the margins for adaptation?

- 1. Technology
- 2. Innovation

How Does Technology Adjust to Heat?

• Technology Measure: Output elasticity w.r.t. labor or capital (OE)

How does technology responds to heat?


$$\ln(OE)_{it}^m = \sum_{b \neq [60-70^{\circ}F)} \beta_b^m \operatorname{Bin}_{it}^b + \gamma^m \operatorname{Prec}_{it} + \delta_i^m + \eta_{c(i),t}^m + \zeta_{s(i),t}^m + \varepsilon_{it}^m, \qquad m \in \{K, L\}$$

→ Labor OE trend

➤ LOE by industry

➤ COE by industry

$\textbf{Heat} \Rightarrow \textbf{More Capital-Intensive Technology}$

Poisson regression (i - industry, r - region, t - year)

 $\mathsf{Innovation}_{\textit{i},\textit{r},\textit{t}} = \mathsf{exp}\{\delta \cdot \mathsf{ExtremeExposure}_{\textit{i},\textit{r},\textit{t}-2} + \alpha_{\textit{r},\textit{s}(\textit{i})} + \alpha_{\textit{t}} + \varepsilon_{\textit{irt}}\}$

Poisson regression (i - industry, r - region, t - year)

$$\mathsf{Innovation}_{i,r,t} = \exp\{\delta \cdot \mathsf{ExtremeExposure}_{i,r,t-2} + \alpha_{r,s(i)} + \alpha_t + \varepsilon_{\mathit{irt}}\}$$

Region-industry specific exposure

Avg DD map (** Patent Data (** Zolas Crosswalk)

Poisson regression (i - industry, r - region, t - year)

$$\mathsf{Innovation}_{i,r,t} \ = \ \exp\Bigl(\beta_1 \, \mathsf{CDD}_{r,t-2} + \beta_2 \, \mathsf{LI}_{i,0} + \beta_3 \, \mathsf{CDD}_{r,t-2} \times \mathsf{LI}_{i,0} + \alpha_{r,s(i)} + \alpha_t\Bigr)$$

- Innovation_{i,r,t}: labor-saving patents count Phapshot Classification
- SE Clustered at region(NUTS3)-year level
- Main coefficient of interest : β_3
 - Do more exposed industries develop more labor-saving patents under extreme heat?

Exposed Industries Develop more LS Patents Under Heat

 Table 1: Heat and Labor-Saving Innovation

	Labor-saving patents (1)
CDD	-0.0069***
	(0.0016)
Labor Intensity	-2.797***
	(0.1440)
$CDD \times Labor\ Intensity$	0.0144***
	(0.0034)
Observations	76,400
Region-Sector fixed effects	✓
Year fixed effects	✓

Exposed Industries Develop more LS Patents Under Heat

Table 2: Heat and Labor-Saving Innovation

		<u></u>
	Labor-saving patent	ts
CDD	-0.0069***	Example:
	(0.0016)	• Spain : +500 CDD
Labor Intensity	-2.797***	(p95 firm-level \triangle CDD, 2000 \rightarrow 2020)
	(0.1440)	,
$CDD \times Labor\ Intensity$	0.0144***	• Textiles (LI = 0.72)
	(0.0034)	• \Rightarrow LS patents $\approx 5.7 \times$ higher
Observations	76,400	
Region-Sector fixed effects	\checkmark	
Year fixed effects	✓	

Robustness

- Temp measure: Bins vs CDD * OE Bins * OE CDD * Definition
- Dynamics: Lagged CDD (2–5) > OE CDD Lags > Patents Lags
- Alternative innovation measure: past patent stocks; shares instead of count
 All outcomes
- Long-Difference: LD

Key Takeaways So Far

- 1. Extreme heat shocks disproportionately harm labor-intensive firms
- 2. Firms and industries respond through two margins:
 - **Technology**: more capital-intensive production technology.
 - Redirected innovation: more labor-saving innovation.

Key Takeaways So Far

- 1. Extreme heat shocks disproportionately harm labor-intensive firms
- 2. Firms and industries respond through two margins:
 - **Technology**: more capital-intensive production technology.
 - Redirected innovation: more labor-saving innovation.

Would induced innovation attenuate the damage from heat? Mechanisms?

Apply a standard DTC framework in a new context: **climate-induced labor shocks** (Acemoglu et al 2012)

Heat ⇒ Where Does Innovation Go? (Intuition)

Heat ⇒ Where Does Innovation Go? (Intuition)

Acemoglu 2002, Acemoglu et al. (2012):

- Profit-driven innovators: build machines where expected payoffs are largest
- Abundant Factor attracts more innovations estimates 1
- Innovation can improve productivity

Heat ⇒ Where Does Innovation Go? (Intuition)

Acemoglu 2002, Acemoglu et al. (2012):

- Profit-driven innovators: build machines where expected payoffs are largest
- Abundant Factor attracts more innovations * estimates 1
- Innovation can improve productivity

In my model:

- Innovators choosing between K (Robots) or L (Energy efficient AC) sectors
- Heat lowers effective labor: effective labor = $D(T) \cdot L$ with $D(T) \downarrow$
- This makes labor more scarce ⇒ innovators tilt to capital sector (labor-saving).

 Direct effect (damage): hotter days make each worker less effective ⇒ productivity down. D(T) ↓

- Direct effect (damage): hotter days make each worker less effective ⇒ productivity down. D(T) ↓
- Indirect effect (induced innovation): labor-saving innovations raise efficiency ⇒ productivity up γ(T) ↑

- Direct effect (damage): hotter days make each worker less effective ⇒ productivity down. D(T) ↓
- Indirect effect (induced innovation): labor-saving innovations raise efficiency ⇒ productivity up γ(T) ↑
- Net effect is ambiguous ex ante: which force dominates is an empirical question

$$\Delta \text{Productivity} \approx \underbrace{\Delta D(T)}_{\text{Direct heat damage}} + \underbrace{\Delta \gamma(T)}_{\text{Induced innovation}} > 0$$

- Direct effect (damage): hotter days make each worker less effective ⇒ productivity down. D(T) ↓
- Indirect effect (induced innovation): labor-saving innovations raise efficiency ⇒ productivity up γ(T) ↑
- Net effect is ambiguous ex ante: which force dominates is an empirical question

$$\Delta \text{Productivity} \approx \underbrace{\Delta D(T)}_{\text{Direct heat damage } < 0} + \underbrace{\Delta \gamma(T)}_{\text{Induced innovation } > 0}$$

Can we innovate our way out of trouble?

Do LS Patents Mitigate Heat-TFP Damage?

$$\begin{split} \ln \mathrm{TFP}_{it} &= \beta_1 \, \mathrm{CDD}_{it} + \beta_2 \, \mathrm{LS}_{i,t-2} + \beta_3 \, \mathrm{CDD}_{it} \times \mathrm{LS}_{i,t-2} + \Gamma \, \mathrm{Prec}_{it} \\ &+ \boldsymbol{X}_{i,t-2} + \alpha_i + \alpha_{c(i),t} + \alpha_{s(i),t} + \varepsilon_{it}. \end{split}$$

- LS innovation indicator: $LS_{i,t-2} = 1\{LS \text{ patent within past 2 yrs}\}$
- Firm Controls: $X_{i,t-2}$ includes lagged firm size
- Interpretation: $\beta_3 > 0 \Rightarrow$ LS innovation attenuates heat-productivity damage (flattened damage function).

→ LS firms

LS Patents Flatten the Heat-TFP Damage

Table 3: TFP on CDD \times LS (lag 2)

	log TFP
CDD	-0.0005**
	(0.0002)
Any LS $(t-k)$	-0.1638
	(0.5309)
$CDD \times Any \; LS \; (t-k)$	0.0061***
	(0.0021)
Firm fixed effects	\checkmark
Country-Year fixed effects	\checkmark
Sector-Year fixed effects	\checkmark
Lag Revenue Control	\checkmark

LS Patents Flatten the Heat-TFP Damage

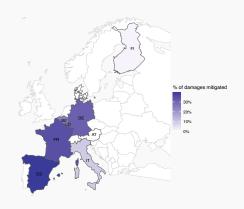
	log TFP
	(1)
CDD	-0.0005*
	(0.0002)
Any LS $(t-k)$	-0.1638
	(0.5309)
$CDD \times Any \; LS \; (t-k)$	0.0061**
	(0.0021)
Firm fixed effects	\checkmark
Country-Year fixed effects	\checkmark
Sector-Year fixed effects	✓

- Benchmark shocks (2000→2020):
 - +500 CDD (Spain): non-LS \approx [-0.25%], LS \approx [+2.8%].
- Directed innovation attenuates heat-induced productivity losses (consistent with model).

Result robust for $k \in [1,3]$, though no significant contemporaneous effect k=0; stock variant similar. ightharpoonup Lag figure


Lag Revenue Control

What if there were no induced innovations?


$$\label{eq:mitigation} \mbox{Mitigation} = \frac{\Delta \mbox{TFP}_{\mbox{Climate Change}}^{\mbox{No Innovation}} - \Delta \mbox{TFP}_{\mbox{Climate Change}}^{\mbox{Innovation}}}{\Delta \mbox{TFP}_{\mbox{Climate Change}}^{\mbox{No Innovation}}}$$

What if there were no induced innovations?

$$\label{eq:Mitigation} \begin{aligned} \text{Mitigation} &= \frac{\Delta \text{TFP}_{\text{Climate Change}}^{\text{No Innovation}} - \Delta \text{TFP}_{\text{Climate Change}}^{\text{Innovation}}}{\Delta \text{TFP}_{\text{Climate Change}}^{\text{No Innovation}}} \end{aligned}$$

(a) Heat Shock (2020–2000)

(b) Mitigation via LS innovation (2000–2020)

On avg, heat-induced LS innovation mitigates 28% of productivity damage

First paper to provide empirical evidence that innovation serves as a margin of climate adaptation outside of agriculture

First paper to provide empirical evidence that innovation serves as a margin of climate adaptation outside of agriculture

- Heat shocks cause labor-biased damage (hits labor-intensive firms; production shifts toward capital)
- Innovation responds: labor-saving patents rise, mitigating productivity losses by 28% (19% in Moscona & Sastry 2023, ag.)

First paper to provide empirical evidence that innovation serves as a margin of climate adaptation outside of agriculture

- Heat shocks cause labor-biased damage (hits labor-intensive firms; production shifts toward capital)
- Innovation responds: labor-saving patents rise, mitigating productivity losses by
 28% (19% in Moscona & Sastry 2023, ag.)

⇒ Innovation is a key channel of adaptation to climate change

First paper to provide empirical evidence that innovation serves as a margin of climate adaptation outside of agriculture

- Heat shocks cause labor-biased damage (hits labor-intensive firms; production shifts toward capital)
- Innovation responds: labor-saving patents rise, mitigating productivity losses by
 28% (19% in Moscona & Sastry 2023, ag.)
- ⇒ Innovation is a key channel of adaptation to climate change

Upcoming projects

- Who adapts? Uneven adaptation Winners, losers, and aggregate consequences
- Developing economies: Extending to India and China

Extreme Heat and Directed Innovation

Enjie (Jack) Ma

Cornell University

em686@cornell.edu