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Abstract

Using manufacturing sector firm-level data from Orbis for 2000–2020, we examine the effects of tempera-

ture shocks on industry market power across 12 European countries. Our analysis shows that temperature

extremes reduce firm productivity, with significant heterogeneity across firms. Small firms experience

larger productivity declines, leading to a reallocation of market share toward larger firms. As a result,

temperature shocks increase industry concentration and aggregate markups. To quantify the welfare costs

arising from both the productivity impact and the increase in market power, we develop an equilibrium

model of heterogeneous firms with a variable elasticity of substitution that endogenizes markups. Based

on the estimated marginal effects of temperature shocks on firm productivity and markups, the model

suggests that the observed changes in the temperature distribution between 2000 and 2020—relative to

a counterfactual scenario in which the temperature distribution remained constant—resulted in heteroge-

neous welfare effects across EU countries. Spain, which experienced the largest temperature increase over

this period, incurred the largest welfare loss, equivalent to 0.44 percent of manufacturing sector GDP. A

model that does not endogenize markups would miss over 40 percent of the welfare loss from extreme

heat. Our findings underscore the importance of incorporating firm-level heterogeneity and market power

into climate impact assessment.
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1 Introduction

Rising temperatures and increasingly frequent heatwaves are among the most prominent and well-documented

manifestations of climate change. Temperature shocks such as extreme heat have been shown to negatively

affect a wide range of social and economic outcomes (Hsiang and Kopp, 2018; Carleton et al., 2022). Among

the climate impact literature, an emerging line of work demonstrates that extreme heat reduces firm produc-

tivity (Zhang et al., 2018; Somanathan et al., 2021; Xie, 2024), but the effects of these productivity shocks

on market power remain largely unexplored. This represents an important research gap, as shifts in market

power can carry substantial welfare implications (De Loecker et al., 2021; Edmond et al., 2023).

Our study aims to fill this gap by examining the impact of temperature on market power and the resulting

welfare implications, using an empirical analysis guided by a theoretical model. In doing so, we bridge

two important strands of literature: one on the economic impacts of climate change, and the other on the

causes and consequences of rising market power. Our empirical analysis draws on detailed firm-level balance

sheet and geo-location data from ORBIS, combined with high-resolution weather information, covering 12

European countries from 2000 to 2020. We begin by analyzing how temperature extremes affect firm market

shares and market concentration, metrics that can be readily constructed from firm revenue data. The results

provide strong and robust evidence that extreme heat increases local market concentration by shifting market

share from smaller to larger firms.

While informative and straightforward to analyze, changes in market concentration do not directly reveal

the direction or magnitude of the impact of climate shocks on market power and social welfare (Syverson,

2019). To better interpret our empirical findings on concentration and more importantly to quantify their im-

plications for market power and welfare, we develop a stylized heterogeneous firm model à la Melitz (2003),

which links climate-induced productivity shocks to aggregate outcomes such as concentration and market

power. Informed by insights from the literature and our empirical findings, the model explicitly incorpo-

rates the heterogeneous effects of climate shocks on firm productivity across different firm sizes. To capture

how these heterogeneous impacts lead to market share reallocation and changes in firm markups—a robust

measure of market power—we adopt a variable elasticity of substitution (VES) framework which allows for

endogenous markups following Atkeson and Burstein (2008). In this setting, climate shocks not only reduce

average firm productivity (TFP) but also amplify within-industry across-firm productivity dispersion, leading

to a reallocation of market shares toward more productive, higher-markup firms. This reallocation, in turn,

raises the aggregate markup and results in welfare losses. The overall welfare loss arises from two channels:

the direct productivity loss and the increase in markups due to market share reallocation. While the con-

stant elasticity of substitution (CES) framework commonly used in the literature can capture the former, our

approach endogenizes markups and therefore incorporates the latter, an empirically significant channel.

The theoretical model illustrates that the overall welfare effects of climate shocks critically depend on

changes in both firm productivity (specifically quantity-based TFP, or TFPQ) and markups. Guided by this

insight, our empirical analysis is set to quantify how temperature extremes affect TFPQ and markups, i.e., the
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gradients of TFPQ and markups with respect to temperature extremes. As is common in the literature, our

firm-level data include information on revenue but not product quantity, which prevents the direct estimation

of TFPQ and markups. Our empirical approach relies on the fact that gradient estimates can still be obtained,

provided that TFPQ and markups are recoverable up to a normalizing constant.

Our empirical analysis proceeds as follows. We first estimate revenue-based TFP (TFPR) from the produc-

tion function estimation following the approach of Ackerberg et al. (2015), and then estimate revenue-based

markups based on the production function estimation following De Loecker and Warzynski (2012).1 Al-

though these revenue-based markup estimates may not be informative of the level of true markups (Bond et

al., 2021), they can still be informative of the true dispersion (De Ridder et al., 2022). In our baseline model,

which features a Cobb-Douglas production function and heterogeneous demand elasticities, revenue-based

markups equal true markups scaled by an industry-specific constant. As a result, the semi-elasticity of true

markups with respect to temperature extremes can be consistently estimated using revenue-based markups in

a semi-log regression with industry fixed effects.

A similar challenge exists for the gradient estimate of TFPQ: we cannot directly estimate the impact of

temperature extremes on TFPQ based on the estimated TFPR as that would capture the impact not only on

TFPQ but also on product prices. Instead, we recover the dispersion of TFPQ based on a key theoretical

result under the VES framework: the market share of a firm in a given year is a function of its markup and

TFPQ normalized by a market-year level scale factor.2 Therefore, with observed market shares and estimated

revenue-based markups, we can recover relative TFPQ, which is the true TFPQ up to a market-year level

constant. The semi-elasticity of relative TFPQ with respect to temperature extremes can then be estimated

based on the recovered relative TFPQ in a semi-log regression with market by year fixed effects.

Our empirical analysis shows that extreme heat reduces firm productivity while increasing the average

markup. Specifically, a day with maximum temperature of 100◦F would decrease the average firm-level TFPQ

by 0.0128 percent and increase the average markup by 0.0046 percent compared to a day within the moderate

range between 40◦F and 80◦F. The estimated effects on productivity are closely aligned with findings from

the literature using similar model specifications (Nath, 2025). The effects are heterogeneous across firms:

small firms experience declines in both productivity and markup, whereas large firms see increases in both.

The increase in the aggregate markup could be driven by both the reallocation of market share from small to

large (or from low- to high-markup) firms and rising markups among larger firms.

Using the estimated marginal effects of temperature shocks on productivity and markups, we conduct a

quantification exercise to address two key questions. First, what is the welfare loss resulting from the pre-

dicted productivity changes and market share reallocation caused by the observed changes in the temperature

distribution between 2000 and 2020? Second, how does assuming a standard CES demand framework, which

1This approach relies on the fact that markups can be written as the ratio of the output elasticity of a variable input (such as labor)
over the input’s revenue share. The output elasticity can be obtained after the estimation of the production function. With revenue
instead of quantity data, the estimated elasticity may not be equal to the output elasticity, thus introducing measurement error in
markups.

2A market is defined as a country by NACE-4 industry in our baseline.
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does not account for observed markup heterogeneity affect the welfare measurement?

Two model parameters are central to answering these questions— the within-sector elasticity of substi-

tution and across-sector elasticity of substitution. These parameters govern the degree of reallocation and

changes in markup dispersion in response to heat-induced productivity shocks. Specifically, they determine

how changes in relative prices translate into market share movement, as well as how sensitive markups ad-

justments are to market share changes. We draw on the literature that estimates the two elasticity parameters

(De Loecker et al., 2021; Edmond et al., 2023) for our baseline analysis. Additionally, we calibrate these pa-

rameters using a simulated method of moments (SMM) approach, as described in Appendix E. The calibrated

values are consistent with those reported in the literature.

For each firm, we predict changes in TFPQ based on the response to shifts in the temperature distribu-

tion between 2000 and 2020, using our estimates from Equation (4). The resulting counterfactual TFPQ in

2020—reflecting the impact of temperature changes—is then used to solve for the model’s counterfactual

equilibrium market shares and markups at the firm level. We aggregate these results to compute sector- and

country-level changes in aggregate TFPQ and markups, and use them to simulate welfare losses according to

Equation (17).

Our quantification exercise shows significant cross-country heterogeneity in welfare effects under the ob-

served temperature changes from 2000 to 2020. In Spain, which experienced the largest temperature increase

in terms of annual cooling degree days, the welfare loss is equivalent to 0.44 percent of manufacturing sec-

tor GDP, whereas in Hungary, which experienced a decrease in cooling degree days, welfare increases by

about 0.38 percent. More importantly, if we ignore the role of reallocation and endogenous markups, we

can misstate the welfare cost of climate change. Such misstatement arises because climate-induced market

power leads to additional misallocation of inputs across firms and consequently affects labor demand and

wages through quantity distortions. A standard CES approach overlooks these key reallocation channels and

underestimates the welfare loss in Spain by about 42 percent.

To gauge the relative magnitude of our welfare loss estimates, we compare our numbers to the related

literature on estimating the GDP loss of climate change due to increases in temperature. For studies estimat-

ing GDP impact of extreme temperature in Europe, IPCC (2014) and IPCC (2022) document GDP losses in

Europe on the order of 0.1–0.7% under roughly 0.5◦C of warming, with Southern Europe more negatively

affected than Northern and Eastern Europe. For the US, Hsiang et al. (2017) finds that each additional 0.5◦C

reduces aggregate GDP by about 0.6%. While many of these studies focus on multiple impacts – for example,

agriculture, coastal flooding, and health – our welfare losses stem from a single channel : heat-driven produc-

tivity shocks, and focus exclusively on the manufacturing sector. Our welfare loss estimates for Spain – 0.44

percent under an increase of 1.08 ◦C in the mean of daily maximum temperature – thus appears substantial

when viewed alongside these broader estimates. More importantly, markups play a significant role in the

measurement of our welfare loss. A comparison of welfare loss estimated under VES versus CES demand

highlights the role of markups in the measurement of climate damage – CES could underestimate the welfare

loss of heat-driven productivity loss by over 40 percent, as it fails to take into account the endogeneity of
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markups and the effect of the consequent changes in misallocation on aggregate productivity.

In sum, our findings emphasize the importance of firm heterogeneity, market structure dynamics, and en-

dogenous market power for the welfare cost of climate change. By showing that extreme temperature shocks

can exacerbate market power and reduce welfare, our study points to potentially important yet underappreci-

ated economic consequences of climate change, as well as another factor contributing to the rise of market

power.

Our paper contributes to three strands of literature. The first is the emerging literature that documents

that temperature extremes exhibit a negative effect on firm-level productivity and that the effect may be het-

erogeneous across firms due to differences in their ability to adapt (Bustos et al., 2016; Zhang et al., 2018;

Somanathan et al., 2021; Ponticelli et al., 2023; Xie, 2024; Bilal and Känzig, 2024; Shi and Zhang, 2025).3

We contribute to this literature by examining how heterogeneous productivity impacts lead to changes in mar-

ket structure and aggregate welfare. In particular, we focus on the effects of temperature extremes on market

power, an important but underexplored dimension in the climate economics literature. Among these studies,

our paper is perhaps most closely related to Ponticelli et al. (2023), which documents rising local market con-

centration in U.S. counties with larger temperature shocks. In contrast to their focus on market concentration,

our analysis examines markups, a more direct measure of market power, and quantifies the associated wel-

fare costs. This welfare-based approach provides a more informative assessment of the importance of market

power as a channel through which climate shocks affect the overall economy.

Second, our paper adds to the literature on understanding the causes and consequences of changing mar-

ket power over time and across space (De Loecker et al., 2020; Rossi-Hansberg et al., 2020). The literature

identifies several market and regulatory forces behind the rise of market power, and develops framework to

quantify the economic and welfare impacts from market power change.4 Two papers are particularly relevant:

De Loecker et al. (2021) build an endogenous markup model to quantify how changes in market structure

and technology can lead to movements in market power, labor share, and job reallocation. Edmond et al.

(2023) develop a model of endogenous markup and quantifies the welfare costs of markups by comparing

them against a markup-free efficient benchmark. Our study contributes to this literature by identifying cli-

mate shocks as a driver for changing market power, and quantifying the resulting welfare implications in a

framework of endogenous markups.

Third, this study fits into the important literature on measuring the economic costs of climate change

(i.e., the social cost of carbon) using the Integrated Assessment Models (IAMs) (Nordhaus, 1992; Hope et al.,

1993; Tol, 1995). We contribute to this strand of literature by examining the role of demand assumption on the

measurement of the cost of climate change. Existing IAM literature and climate-macro literature (Nath, 2025;

3For instance, Somanathan et al. (2021) and Zivin and Kahn (2016) show that larger firms are more inclined to invest in climate-
control technologies like air conditioning, while Ponticelli et al. (2023) documents that smaller firms incur comparatively greater
productivity losses and that larger manufacturers mitigate local shocks by operating multiple plants.

4These underlying forces include the emergence of superstar firms (Autor et al., 2020), globalization (Van Reenen, 2018), antitrust
policy (Van Reenen, 2018), changes in product substitutability (Syverson, 2004), search cost (Goldmanis et al., 2010), entry costs
(Asplund and Nocke, 2006), and technological change (De Loecker et al., 2021).
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Cruz and Rossi-Hansberg, 2021; Rudik et al., 2022) adopt CES demand elasticity assumption and thus abstract

away any welfare effect of climate shocks that can derive from movements of profit margins and associated

misallocation. Following the insights of the trade literature exploring the role of markups in quantifying

welfare implication of trade (Arkolakis and Morlacco, 2017; Arkolakis et al., 2019), our paper adopts a

variable-elasticity (VES) approach to show that climate-driven productivity losses intensify reallocation and

markup dispersion, thus resulting in additional misallocation and higher welfare costs than CES models would

predict. By applying a VES framework to extreme heat shocks, we highlight the importance of relaxing

demand assumption and allowing for endogenous markup on the measurement of economic cost of climate

change.

The remainder of the paper is structured as follows. Section 2 describes our data sources and presents de-

scriptive evidence on market concentration. In Section 3, we develop a stylized framework that connect tem-

perature shock to changes in concentration and markups, highlighting the role of variable demand elasticity

in driving reallocation and market power dynamics. Section 4 introduces the estimation of firm-level markups

and productivity, offering additional empirical evidence on how extreme temperature affects both markups

and productivity at the firm and market levels. Section 5 then outlines our model calibration and quantifies

the welfare implications of the observed productivity shock, underscoring the importance of accounting for

endogenous markups by comparing welfare outcomes under CES and VES assumptions. Section 6 concludes.

2 Data and Descriptive Evidence on Concentration

In this section, we first provide details on our data sources. We then show reduced-form evidence on how

extreme temperature affects market concentration and leads to market share reallocation.

2.1 Data Sources

2.1.1 Firm Data

To measure firm-level economic outcomes, we use the Orbis Database provided by Bureau van Dijk.5 It is

compiled from firm-level financial statements and balance sheets collected by different national information

providers. We use data on annual revenue, labor costs, capital, the number of employees, and materials costs.6

We also use firm-level geographical information, such as address, longitude, and latitude, to match the Orbis

data with the weather data.

We process the data using the the cleaning and imputation procedures in Kalemli-Ozcan et al. (2015),

Bajgar et al. (2020), and Gal (2013), but we use more lenient data filtering and retain firm observations with

5Orbis has been widely used in the literature studying firm-level performance (Bajgar et al., 2019a,b; De Haas and Poelhekke,
2019; Autor et al., 2020).

6Within Orbis, we measure output using the operating revenue. Labor costs are measured by the total costs of employees including
wages and salaries plus employer social-security/pension charges and other staff benefits. Capital is measured by the book value of
tangible fixed assets, including property, plant & equipment. Material costs capture the consumption or purchases of raw materials,
goods and energy.
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fewer employees. Because our analysis focuses on the within-firm response to temperature shocks and the

heterogeneity of that response across firm sizes, maximizing coverage is essential for capturing as much

cross-firm variation as possible. See Appendix A for more details on the cleaning and imputation procedure.

2.1.2 Weather Data

Temperature Our climate variable of interest is daily maximum temperature.7 The daily maximum temper-

ature data comes from NOAA Physical Science Laboratory, which provides global gridded data with a 0.5◦ ×
0.5◦ resolution (around 55 km at mid-latitudes). We assign daily maximum temperature to each firm based on

its recorded longitude and latitude.8

We transform daily temperature into cooling degree days (CDD) above 80◦F and heating degree days

(HDD) below 40◦F. CDD in some day of year d in year t is given by CDDdt = 1(Tdt ≤ 40)× (40−Tdt) while

heating degree days are given by HDDdt = 1(Tdt ≤ 40)×(40−Tdt), where Tdt is daily maximum temperature

on day d of year t. To match the temporal resolution of the Orbis data we aggregate these to the annual level

by summing across days of the year so that AHDDt = ∑
365
d=1 HDDdt and ACDDt = ∑

365
d=1CDDdt . In Section 2.2

we explain how using ACDDs and AHDDs as right-hand-side variables allows us to interpret our estimates

as the slopes of a piecewise linear spline similar to the approach in Nath (2025).

ACDDs and AHDDs essentially sum up temperatures above 80◦F and below 40◦F for the year, creating

a measure of total exposure to extreme heat and cold. We focus on extreme temperature because it is the

dominant weather hazard for the European countries in our sample. Europe has warmed almost twice as

fast as the global average, and heatwaves have become more common and intense (IPCC, 2021). Echoing

this trend, the European Climate Risk Assessment 2024 ranks heat-stress as the climate risk at “critical”

levels (European Environment Agency, 2024). In robustness checks we use temperature bins as an alternative

measure of extreme temperature exposure. The temperature bins are constructed by grouping daily maximum

temperatures into eight 10◦F intervals: <30◦F, 30–40◦F, 40–50◦F, 50–60◦F, 60–70◦F, 70–80◦F, 80–90◦F, and

≥90◦F. We then count the number of days in a year during which an firm experiences a maximum temperature

within each bin, with the total across all bins summing to 365.

Precipitation The precipitation data are from NOAA Physical Science Laboratory. It is a global gridded

data product with a 0.5◦ × 0.5◦ resolution. We extract precipitation at the location of each firm based on its

geographic information, and average daily precipitation to yearly level.

7We use daily maximum temperature because it captures daytime temperatures that workers face while on the job, and therefore
it better reflects the true exposure compared to other temperature measures such as daily averages (Graff Zivin and Neidell, 2014;
Somanathan et al., 2021; Gagliardi et al., 2024; Lai et al., 2023). We discuss how our mechanisms could extend to other climate
shocks in Section 6.

8For firms in our sample that do not have longitude and latitude information, we use the average of the daily maximum temperature
within the zipcode where the firm is located.
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2.1.3 Final Sample

Our final sample consists of manufacturing firms in 12 European countries from 2000 to 2020. These countries

have the most complete firm-level Orbis data, as well as the geographic information needed to match the

climate variables.9

Our sectoral focus is the manufacturing sector, which the prior literature has found is impacted by extreme

temperatures (Graff Zivin and Neidell, 2014; Zhang et al., 2018; Nath, 2025). Under the Statistical Classi-

fication of Economic Activities in the European Community (NACE), sectors are classified in four levels.

The manufacturing sector corresponds to the Level 1 sector, labeled C. It comprises 23 Level 2 industries,

hereafter referred to as NACE2 industries; and 302 Level 4 industries, hereafter referred to as NACE4 indus-

tries.10 Throughout the paper, we use sector to refer to the top level of the NACE classification, and NACE2

and NACE4 to refer to the Level 2 and Level 4 NACE industry classification.

After applying the data cleaning procedure outlined in Appendix A, our full sample consists of 5.04 mil-

lion firm-year observations. The sample is unbalanced, with data coverage varying across countries and years,

as shown in panel (a) of Figure F1. We use the full sample to construct measures of market concentration for

each market-year and provide descriptive evidence on the effects of temperature shocks on market concentra-

tion.

In some analyses we use a balanced sample restricted to firms that entered the dataset before 2000 and

remained throughout the entire sample period. This balanced sample, illustrated in panel (b) of Figure F1, con-

sists of 1.07 million observations, accounting for approximately 21% of the full sample. We use the balanced

sample to examine the impact of temperature changes on firm-level productivity and markups. This approach

allows us to better isolate effects on the intensive margin—how existing firms adjust their performance—

rather than confounding these effects with changes on the extensive margin, such as firm entry and exit,

which are not reliably captured in the Orbis database. Our firm-level results remain robust to using the full

sample.

Table 1 reports the summary statistics of the data used for analysis. The first panel presents summaries

of our climate data. The average firm is exposed to about 400 cooling degree days and only 160 heating

degree days, but with substantial variation as reflected in the standard deviation and the range between the

minimum and maximum values. The bottom panel presents summaries of firm-level outcomes, some of which

are computed and not directly from the data. The panel shows that there is substantial variation in TFPQ and

TFPR across firms. On average, firms have a 1% market share and a 13% markup, but some may be much

larger.

9These countries are: Belgium, Denmark, Germany, Estonia, Spain, Finland, France, Croatia, Hungary, Italy, Poland, Slovakia.
10NACE is a hierarchically structured four-digit code system used in the European Union to classify industries, similar to

NAICS in North America: https://en.wikipedia.org/wiki/Statistical_Classification_of_Economic_Activities_
in_the_European_Community. Within the manufacturing sector, NACE2 industries include activities such as the manufacturing
of food products, beverages, and textiles. NACE4 are more granular classifications, such as processing and preserving of meat,
processing and preserving of potatoes, manufacturing of ice cream, and manufacturing of carpets and rugs.
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Table 1: Summary Statistics

Variable Mean Std. Dev. Min. Max. N
Climate variables (Firm × Year)
ACDD 417 370 0 6035 5043223
AHDD 159 332 0 4528 5043223
# days [<30F] 4.9 13 0 157 5043223
# days [30-40F] 23 25 0 161 5043223
# days [40-50F] 50 25 0 135 5043223
# days [50-60F] 77 21 0 195 5043223
# days [60-70F] 78 19 1 194 5043223
# days [70-80F] 70 18 0 285 5043223
# days [80-90F] 49 26 0 135 5043223
# days [>=90F] 14 18 0 225 5043223
Precipitation 1.9 0.79 0.014 5.8 5043223

Market outcomes (Country× NACE4 × year)
HHI 3450 3086 7.46 10000 51041
CR4 0.73 0.28 0.02 1.00 51041
CR8 0.82 0.24 0.03 1.00 51041

Firm outcomes (Firm × Year)
log(TFPR) 1.6 1.26 -9.68 12.7 5043223
log(TFPQ) -0.096 0.42 -3.09 4.07 5043223
Markup 1.19 1.45 0.491 19.4 5043223
Market share 0.0081 0.044 1.27e-10 1.00 5043223

Notes: This table reports the summary statistics of climate variables, establishment outcomes, and market outcomes. A market is
defined as a combination of country-NACE4 industry cell. ACDD represents annual cooling degree days above 80◦F, and AHDD
represents annual heating degree days below 40◦F.

2.2 Market Concentration

In our main analysis we define a “market” at a relatively narrow level, country-by-NACE4 industry. This ap-

proach aligns with our theoretical framework in Section 3, where we model an oligopolistic structure of finite

firms confronting local shocks. Our results remain robust when markets are defined at a broader level—by

country and NACE2 industry.

We measure market concentration using two common, sales-based metrics: the Concentration Ratio (CR)

and the Herfindahl–Hirschman Index (HHI). The CRN is defined as the share of total sales captured by the

top N firms in a market-year, while the HHI is the sum of squared market shares of all firms in that market.

Both measures capture the dominance of larger firms and the degree of overall concentration. However, we

acknowledge the caveat that Orbis data does not provide universal coverage of all firms and tends to be biased

toward larger, older, and more productive firms (Kalemli-Ozcan et al., 2015; Bajgar et al., 2020). As a result,

the market concentration measures may overstate the true level of concentration.

When analyzing market-level outcomes, we aggregate firm-level temperature and precipitation data to the
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market-level by calculating weighted averages, using each firm’s market share as the weight.

The mid panel of Table 1 shows summaries of market-level outcomes. In the average market, the top 4 or

8 firms hold three-quarters or greater of the market share, again with significant heterogeneity across markets.

2.2.1 Descriptive Evidence on Market Concentration

In this section, we present descriptive, reduced-form evidence for how extreme temperature affects market

concentration. We examine two underlying margins of adjustment that lead to changing concentration: market

share reallocation and firm exit.

Market Concentration Let j index markets and t index years. d indexes day-of-year for the weather

variables that will be aggregated to the annual level. We use the following specification to estimate the effect

of extreme temperature on market concentration:

y jt = F(Tjdt ;β)+G(R jdt ;ι)+δ j +ξt + ε jt , (1)

where the unit of observation is a market-year (i.e., country-NACE4-year). The dependent variable will be

either log(HHI) and log(CR4). Tjt and R jt are the temperature exposure and precipitation in market j and

year t. The response function F(·) captures the relationship between the outcome y jt and our measure of tem-

perature in year t, which we formally defined below. G(·) is a second-order polynomial of the average daily

precipitation in order to allow for non-linear effects. We include market fixed effects (δ j) to capture the base-

line differences across industries and locations and year fixed effects (ξt) to capture common macroeconomic

shocks. Standard errors are clustered two ways at the country-year level and market (i.e., country-industry)

level to account for spatial correlation across industries within a country-year and serial correlation over time

within a market.

The recent literature finds that the marginal effect of temperature is negligible in the moderate temperature

range, with impacts primarily deriving from extreme heat or extreme cold exposure (Lai et al., 2023; Ponticelli

et al., 2023; Carleton et al., 2022). We follow Nath (2025) and adopt a piecewise linear spline in daily

maximum temperature Tjdt :11

f (Tjdt) = β1 1(Tjdt ≤ 40)(40−Tjdt)︸ ︷︷ ︸
HDD

+ β2 1(Tjdt ≥ 80)(Tjdt −80)︸ ︷︷ ︸
CDD

, (2)

where moderate degree days between 40◦F and 80 ◦F are omitted. We can then sum the daily splines over all

11In the literature, three different approaches have been recently used to capture the annual effects of daily temperature: temperature
bins (e.g. Ponticelli et al., 2023; Zhang et al., 2018), global polynomials (e.g. Carleton et al., 2022; Addoum et al., 2023), and
splines (e.g. Nath, 2025). Each approach has different benefits and limitations so present results using temperature bins and global
polynomials as robustness checks in the Appendix.
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days in a year to obtain the annual temperature response function F(Tjdt ;β):

F(Tjdt ;β) =
365

∑
d=1

{
β1(40−Tjdt)1(Tjdt < 40)+β2(Tjdt −80)1(Tjdt > 80)

}
= β1AHDD jt +β2ACDD jt , (3)

where AHDD and ACDD denote the annual heating degree days (below 40◦F) and cooling degree days (above

80◦F). β1 and β2 correspond to the slopes on the two outer linear components of the piecewise spline. Given

some daily maximum temperature Tjdt , the effect of a day of the year at that temperature relative to the omitted

40◦F - 80◦F range is (40−Tjdt)×β1 if Td jt < 40 and (Tjdt −80)×β2 if Tjdt > 80.

Figure 1 plots the estimated effects of daily maximum temperature on HHI and CR4. Additional days in

a year above 80◦F are associated with greater market concentration in that year, but additional degree days

below 40◦F have a small and imprecise relationship with market concentration. Table G2 reports regression

results, which suggest that a day with maximum temperature of 100◦F would increase HHI by 0.42% and

increase CR4 by 0.18% relative to a day in the moderate range 40◦F to 80◦F. This result is consistent with

Ponticelli et al. (2023), which, in the context of the United States, finds that higher temperatures can lead to

an increase in local industrial concentration.

Figure 1: Effect of Temperature Change on Market Concentration
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Notes: This figure reports the effect of the temperature change on market concentration. The coefficients are estimated from Equation
(1). The market is defined at the country-NACE4 industry level. The dependent variables are log(HHI) and log(CR4). The blue bands
show the 95% confidence interval. Standard errors are two-way clustered at the country-year and market levels.

Market Share Reallocation Our results above indicate that extreme temperature increases market con-

centration. Next we provide supporting, firm-level evidence that extreme temperature shocks result in a

reallocation of market share from small firms to large ones. To do so, we use the following specification:

si jt = F(Ti jdt ;β)+F(Ti jdt ;β)× ln(Revi)+G(Ri jdt ;ι)+G(R jdt ;ι)× ln(Revi)+αi +δ jt + εi jt , (4)
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where i indexes firms and the daily weather variables are now measured at the firm-level. si jt is the logarithm

of a firm i’s market share, calculated as the ratio of the value added of firm i in year t to the total value added

of all firms in market j in the same year. To capture heterogeneous effects, we interact the response function

F(Ti jdt) with the logarithm of the average total revenue for each firm over the sample period, ln(Revi). The

functions F and G are the same as the previous section. We include firm fixed effects (αi) to absorb time-

invariant unobserved firm heterogeneity. To more flexibly control for time-varying shocks, we include market-

year fixed effects δ jt . Standard errors are two-way clustered at the firm and market-year levels, to allow for

serial correlation within a firm across years and spatial correlation across firms within a market-year.

Figure 2 presents the predicted changes in the logarithm of market share in response to the daily maximum

temperature, based on estimates from Equation (4). The panels capture the effect of temperature on firms of

three different sizes—small, medium, and large—corresponding to the 10th, 50th, and 90th percentiles, re-

spectively, of the revenue distribution across all firms. The results show that daily maximum temperatures

above 80◦F tend to reduce the market share of small firms while increasing the market share of large firms, in-

dicating a reallocation of market share from smaller to larger firms, consistent with our evidence for increasing

concentration in Figure 1.

Figure 2: Heterogeneous Effects of Temperature Change on Market Share
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Notes: This figure reports the heterogeneous effects of temperature change on firm market share by firm size. Coefficients are
estimated from Equation (4). The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th
percentiles, respectively, of the revenue distribution across all firms. Standard errors are two-way clustered at the country-year and
market levels. The blue bands show the 95% confidence interval.

Firm Exits In addition to examining market share reallocation, we analyze the impact of temperature on

firm exits using Equation (4). We construct a dummy variable for firm exit, defined as a firm not appearing in

the dataset after a given year.12 Our results, presented in Figure F2, show that extreme heat increases the exit

rate for small firms but decreases it for large firms. However, given that data coverage in Orbis varies over

time and across countries, the observed exits may not fully reflect actual firm closures. As such, we interpret

these results with caution.
12A challenge with using Orbis data for studying entry and exist is that it does not record the precise year of entry or exit (Bajgar

et al., 2020). Some firm “entries” may merely reflect improvements in data coverage, but spurious firm exits are unlikely, making the
exit metric more reliable. Accordingly, our empirical analysis focuses on firm-level exit as the main proxy for industry turnover.
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3 A Model of Climate-Induced Market Power

Our reduced form evidence shows that extreme heat increases local market concentration and reallocates mar-

ket share from small to large firms. We next develop an equilibrium model of heterogeneous firms consistent

with this evidence to examine how extreme temperature affects market power and social welfare.

3.1 Supply Side: Heterogeneous Firms and Climate Shocks

We consider an economy with heterogeneous firms à la Melitz (2003). Firm i produces a unique variety under

a constant returns to scale technology and incurs a fix cost f to operate. Firm productivity is drawn from a

Pareto distribution with shape parameter ξ . Firm i’s baseline productivity is denoted as ϕi. If it hires li units

of labor at wage W = 1, it produces yi = ϕi li.

Extreme temperature T affects firm productivity, reducing a firm’s baseline productivity ϕi to an “effec-

tive” level ϕ̃i(T ). We model this via a temperature-induced productivity shock factor γi(T ):

ϕ̃i(T ) =
ϕi

γi(T )
, (5)

where γi(T ) captures the adverse impact of temperature. We assume γi(T ∗) = 1 at the ideal temperature T ∗

and ∂γi(T )
∂T > 0 for T > T ∗. Thus, hotter-than-ideal conditions increase γi(T ), reducing effective productivity.

Marginal cost, MCi, is then the inverse of effective productivity:

MCi =
1

ϕ̃i(T )
= γi(T )

1
ϕi
. (6)

Consistent with our reduced-form findings in the empirical section below, we allow for firm-level hetero-

geneity in temperature responsiveness. More specifically, smaller firms (i.e., those with lower ϕi) experience

disproportionately larger cost increases under extreme heat T̃ > T ∗ and thus tend to lose market share. 13

Firm i’s per-period profit is

πi(ϕi,T ) = Pi yi −
γi(T )

ϕi
yi − f ,

where Pi is the price. Firms are assumed to engage in Cournot competition, and the markup is

µi ≡ Pi

MCi
=

εi

εi −1
,

where εi is firm i’s demand elasticity, which we derive below.

13The literature examines how climate change affects firms differently, with heterogeneity arising from adaptation costs, firm size,
and managerial capabilities. Traore and Foltz (2018) develops a model of climate adaptation, predicting that more productive firms
are more likely to invest in climate-control technology, thereby reducing their vulnerability to heat shocks. Ponticelli et al. (2023)
attributes the heterogeneous effects to differences in energy costs, managerial skills, and access to finance, showing that small firms
suffer disproportionately from rising temperatures, while large firms are better equipped to adapt. Somanathan et al. (2021) and
Zivin and Kahn (2016) provide empirical evidence that air conditioning can significantly mitigate heat-related productivity losses in
manufacturing, but larger firms are more likely to adopt such technology. In addition, differences in labor intensity of production
across firms can also lead to heterogeneous productivity response when shocks are factor-biased.
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3.2 Demand Side

We use two types of demand specifications which have different implications for how markups respond to

climate shocks:

• Constant Elasticity (CES): εi = σ , yielding a constant markup that does not respond to reallocation

nor temperature shocks,

• Variable Elasticity (VES): εi = ε(si), allowing markups to endogenously vary with firm market shares

and temperature shocks.

3.2.1 Demand under Constant Elasticity (CES)

There is a continuum of firms indexed by i ∈ [0,1], operating under monopolistic competition. Under CES

demand with elasticity of substitution σ , each firm faces the residual demand

yi = E
(

Pi

P

)−σ

,

where E is aggregate expenditure and P is the aggregate price index. In this setting, the demand elasticity is

constant across firms, εi = σ , implying a constant markup:

µi =
σ

σ −1
, ∀i. (7)

Although CES demand admits changing firm market shares caused by heterogeneous effects of temperature

on firm productivity, it cannot generate heterogeneous impacts on markups. This limitation becomes critical

when analyzing how climate shocks affect market power.

3.2.2 Demand under Variable Elasticity (VES)

To capture the heterogeneous impacts of climate shocks on markups, we relax the CES assumption in favor

of the VES demand structure following Atkeson and Burstein (2008).14 Consider a continuum of sectors

j ∈ [0,1], each containing a finite number of n j firms, where some firm i in sector j is indexed by i j. Across

sectors, the demand elasticity is η , while within a sector it is ρ , with ρ > η . The sector-level and firm-level

composites are:

Y =

[∫ 1

0
y

η−1
η

j d j
] η

η−1

, y j =

[ n j

∑
i=1

y
ρ−1

ρ

i j

] ρ

ρ−1

. (8)

Under Cournot competition, firm i j’s choice affects the sector-level price index Pj due to the finite nature of

firms in the sector, yielding oligopolistic competition.

14The core qualitative demand feature we leverage — that a firm’s demand elasticity falls with its market share — also arises in
Kimball or Addilog demand which are commonly adopted in models of endogenous markups (Edmond et al., 2023; Arkolakis and
Morlacco, 2017).
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In this setting, the demand elasticity varies across firms, leading to firm-specific markups:

µi j =
εi j

εi j −1
,

where

εi j ≡ ε(si j) =

[
1
ρ
(1− si j)+

1
η

si j

]−1

. (9)

Equation (9) shows that firm demand elasticity is decreasing in market shares – larger firms face more inelastic

demand. The market share si j is determined by the firm’s relative price:

si j =
(Pi j)

1−ρ

∑
n j
k=1(Pk j)1−ρ

=

(
Pi j

Pj

)1−ρ

. (10)

In the VES setup, it is the dispersion of the productivity distribution—rather than its level—that deter-

mines the equilibrium distribution of market shares and markups. Firms with higher productivity ϕi j relative

to other firms in the same market capture larger shares si j and charge higher markups µi j.15 Unlike CES (con-

stant markups), markups vary with shocks that alter dispersion: a mean-preserving spread in productivity

increases the dispersion, raises concentration, and increases aggregate markup.

3.3 Model Predictions

We outline some qualitative predictions on how climate change affects market outcomes based on the model.

Take temperature shocks as an example, we assume extreme temperature exerts differential productivity dam-

ages across firms, captured by the temperature-induced productivity shock γi(T ) as shown in Equation (5).

Our predictions and simulations focus on the market share reallocation but abstract away from entry and exit

in the VES environment.16

Qualitative Predictions Under our VES setting, equilibrium outcomes do not admit a closed-form solution.

Nonetheless, the model delivers three broad qualitative predictions of the impacts of temperature-induced

productivity shock given some simplifying assumptions:

• Reallocation of market shares toward larger (high-productivity) firms;

• A rise in the aggregate (sales-weighted) markup;

• An increase in industry concentration (HHI).

15Empirically, we observe the same pattern in our data. Table G1 documents the positive within–market correlation between
productivity, market share, and markups.

16We focus on the intensive margin for four reasons. First, data limitations make exit/entry measurement less precise. Second,
existing literature has comparatively less focus on the intensive reallocation of market share. Third, as shown by Edmond et al.
(2023), the net effect of entry on aggregate markup can be quantitatively small, whereas exit can raise concentration. Thus omitting
extensive-margin responses provides a conservative (lower-bound) estimate of climate’s effect on market power. Finally, a balanced
sample of incumbents simplifies our theoretical and empirical analysis of markup adjustments.

14



The intuition is straightforward: under extreme temperature, when smaller and less-productive firms are

hit by disproportionately larger productivity shocks, as we have shown in our reduced-form results, they lose

market share further to larger incumbents. As market share shifts toward these already high-markup firms,

the sector’s average markup rises. Appendix C.2.2 shows mathematically that this occurs through a between-

firm reallocation effect and a within-firm effect. The between-firm effect is from market share shifting to

higher-markup firms, holding markups constant, while the within-firm effect is from larger firms increasing

their markups due to facing a less elastic component of the aggregate demand curve. Consequently, between-

firm reallocation leads to larger firms becoming even more dominant, the sales distribution becoming more

dispersed, and raising the Herfindahl–Hirschman Index as shown in Appendix C.2.3.

Because VES models do not admit simple closed-form solutions for key outcomes like the aggregate

markup, we complement these predictions with a simulation of a single-industry VES equilibrium in Ap-

pendix D. We show that a productivity-decreasing shock generates the reallocation patterns consistent with

the qualitative predictions described above.

3.4 The Welfare Cost of Climate-Induced Market Power

Building on the VES framework introduced in Section 3.2.2, this section examines how climate change im-

pacts welfare through firm-level reallocation and changes in market power. In our model, climate change

affects welfare through two key channels. First, it raises the aggregate markup, which acts like an output

tax–i.e., a gap between marginal product and factor income–reducing input use, wages, and total production.

Second, it increases the dispersion in markups across firms, leading to a misallocation of resources away from

the most productive producers and thereby lowering aggregate productivity. Technical details are provided in

Appendix C.4.1.

Aggregate Markup and Employment From the pricing equation (3.1), firms set prices above labor costs

by a factor of the markup. At the aggregate level, the aggregate markup can be interpreted as a labor wedge:

for a given marginal product of labor (MPL), the real wage is

W
P

=
1

M
MPL.

A higher aggregate markup, denoted by M , reduces the real wage (holding MPL fixed). By reducing

workers’ effective return to labor, it depresses labor supply, leading to lower aggregate employment, output,

and consumption. A higher M thus works much like an output tax, lowering labor usage and shrinking overall

economic activity. 17

Markup Dispersion and Aggregate Productivity Markup dispersion will matter for welfare through how

it alters aggregate productivity. Under our production function y = ϕ · l, sectoral productivity is defined as

17Aggregate employment decreases in the aggregate markup in equilibrium as shown in Appendix C.3 for more details.
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the relative output-weighted harmonic average of productivities across firms within a sector, and aggregate

productivity is the relative output-weighted harmonic average of sectoral productivities:

ϕ j =

(
n j

∑
i

qi j

ϕi j

)−1

, ϕ =

(∫ 1

0

q j

ϕ j

)−1

, (11)

where qi j is the output share of firm i within sector j, and q j is the output share of sector j in the total economy:

qi j =
yi j

y j
, q j =

y j

Y
. (12)

Given these definitions, how does markup dispersion affect aggregate productivity? Since firm productivities

are model primitives, markup dispersion affects aggregate productivity only if it distorts the distribution of

market shares across firms. If there is no dispersion in markups (µi j = µ), the efficient firm and sectoral

relative size allocations, q∗i j and q∗j , are functions of productivity only:18

q∗i j =

(
ϕ∗

j

ϕi j

)−ρ

, q∗j =

(
ϕ∗

ϕ∗
j

)−η

, (13)

which allows us to express the efficient sectoral and aggregate productivity as:

ϕ
∗
j =

(
n j

∑
i
(ϕi j)

ρ−1

) 1
ρ−1

, ϕ
∗ =

(∫ 1

0
(ϕ∗

j )
η−1 d j

) 1
η−1

. (14)

However, in the presence of markup dispersion, the equilibrium firm and sectoral allocations are:

qD
i j =

(
µi j

µ j

ϕ j

ϕi j

)−ρ

, qD
j =

(
µ j

M

ϕ

ϕ j

)−η

, (15)

and equilibrium market shares are distorted by a firm or sector’s relative markup size. With markup dispersion,

a firm with a higher markup, holding productivities fixed, results in an inefficiently low output share. Given

these output shares, the sectoral and aggregate productivities are:

ϕ
D
j =

(
n j

∑
i

(
µi j

µ j

)−ρ

(ϕD
i j )

ρ−1

) 1
ρ−1

, ϕ
D =

(∫ 1

0

(
µ j

M

)−η

(ϕD
j )

η−1
d j
) 1

η−1

. (16)

Comparing the two scenarios, the key difference in equilibrium size allocation as shown in Equations (13) and

Equations (15) is µi j
µ j

and µ j
M . These two ratios capture the fact that markup heterogeneity distorts the relative

size allocation—large and high-markup firms are producing too little and small and low-markup firms are

producing too much. This leads to misallocation of production inputs from more productive to less productive

18Even if there exist uniform markups, this still does not reduce aggregate productivity because uniform markups do not change
relative prices across firms.
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firms, resulting in aggregate productivity loss as shown in Equations (14) and (16).

Climate Change and Consumption-Equivalent Welfare To quantify the overall welfare impact of climate-

induced reallocation and market power, we adopt a consumption-equivalent metric in the spirit of Edmond

et al. (2023). This metric represents the percentage of baseline consumption that the representative house-

hold would need to forgo permanently to avoid the climate-induced productivity shock. Under the model, the

consumption-equivalent welfare loss under climate change (cc) is derived as

1 −
(

ϕcc

ϕ

)(
Mcc

M

)− 1
1+ν

, (17)

where ϕcc and Mcc denote the new aggregate productivity and markup after climate change, while ϕ and M

are their baseline values. 19

Equation (17) captures three channels through which climate change undermines welfare via its effects

on productivity and market power. First, climate change can directly lower firm-level productivity, which,

even absent markup distortions, reduces aggregate productivity (i.e., ϕcc < ϕ). Second, greater dispersion in

markups, due to the climate-induced reallocation, leads to a misallocation of production inputs away from the

most productive firms, further reducing aggregate productivity. Third, a rise in the aggregate markup (i.e.,

Mcc > M ) acts like an output tax—suppressing input usage, employment, and overall production. Together,

these effects reduce consumption-equivalent welfare.20

While our framework highlights the welfare losses from both aggregate markups and markup dispersion,

other studies such as Shi and Zhang (2025) emphasize the potential for selection and reallocation effects to

raise aggregate productivity following climate shocks. However, their conclusions rely on a CES demand

system, which assumes constant markups and may overstate the net gains in aggregate productivity from

reallocation, as they abstract from markup distortions that can limit output expansion by large firms. In

contrast, our variable-elasticity framework captures the endogenous increase in markups by large firms, which

limits their output expansion and amplifies misallocation—thus reducing the extent to which reallocation can

offset aggregate productivity losses.

Our model rationalizes the observed empirical patterns of market share reallocation and resulting con-

centration changes through the heterogeneous productivity impacts of climate change across firms. However,

an alternative—and observationally equivalent—mechanism may also be at play: heterogeneity in cost pass-

through. Even if firms face similar productivity (and thus cost) shocks, differences in pass-through behavior

can lead to similar reallocation outcomes. In models with endogenous markups, larger firms exhibit greater

19Appendix C.4.3 details the derivation. ν is the inverse of the Frisch elasticity of labor supply, which we set to 1 following
(Edmond et al., 2023).

20Changes in aggregate productivity reflect both a level effect—the direct decline in firm-level productivity—and a share effect,
which captures how output shares shift across firms. Even if average shocks are negative, reallocation toward more productive firms
could partially offset the loss in aggregate productivity. However, this offsetting share effect is weaker in our setting because markups
respond endogenously: more productive firms also raise markups and restrict output, limiting the potential aggregate productivity
gains from reallocation and reinforcing misallocation.
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markup flexibility, allowing them to pass through less of the cost shock to prices. This enables them to better

stabilize prices, maintain competitiveness, and gain market share, reinforcing their advantage over smaller

firms. Following Arkolakis and Morlacco (2017), we show in Appendix C.1 that pass-through is inversely

related to the level of markups in a simplifying case of local shocks. While our baseline model emphasizes

supply-side heterogeneity, both mechanisms—heterogeneous shocks and heterogeneous pass-through—can

lead to similar patterns in markup and market share dynamics.

4 Empirical Analysis of Productivity and Markups

Our results in Section 2.2.1 show the reduced-form effect of temperature on concentration and market share

reallocation, but we cannot rely on concentration changes to gauge welfare impacts because the relationship

between market concentration and welfare is ambiguous.21 The theoretical model shows that the welfare

impact of climate shocks depends on how they affect economy-wide productivity and markups. We now

formally estimate the marginal effects of temperature on these two outcomes. We use our firm-level revenue

and input data to first recover productivity and markups at the firm level (up to a scale factor). Logarithmic

transformations of these variables will then serve as the dependent variables in regressions on temperature with

appropriate controls (e.g., fixed effects) to absorb the unobserved scale factor. The quantification exercise in

the next section will then use the estimated firm-level effects of temperature to quantify aggregate welfare

measures.

4.1 Estimating Firm Markups

Measuring markups directly is challenging, as firm-level prices and marginal costs are rarely observed si-

multaneously. To estimate markups, we follow the production-function-based approach of De Loecker and

Warzynski (2012), which infers markups from firms’ input choices under the assumption of cost minimiza-

tion. Specifically, the markup of a firm i at time t is expressed as the ratio of the output elasticity of a variable

input x to that input’s cost share in total revenue: µi jt =
αx

i jt
θ x

i jt
. The output elasticity αx

i jt is recovered from

an estimated production function, while the revenue share θ x
i jt is directly computed from firm-level data on

revenues and input expenditures.

We first estimate a Cobb-Douglas production function at the country by NACE4 industry level as our

baseline specification, using the control function approach of Ackerberg et al. (2015). From the estimated

production function, we obtain estimates of output elasticities, which, when combined with each firm’s input

cost shares, allow us to compute firm-level markups. Further technical details on the production function

21While markups offer a direct proxy of market power by capturing the extent to which price exceeds marginal costs, the rela-
tionship between concentration and market power depends on specific demand and supply factors (Van Reenen, 2018; Bajgar et al.,
2019b; Afrouzi et al., 2023; Berry et al., 2019). Traditional Cournot models predict a positive correlation between concentration and
market power (Tirole, 1988), whereas competition-driven consolidation may indicate lower markups (Melitz and Ottaviano, 2008;
Asplund and Nocke, 2006). Syverson (2019) provides a comprehensive overview on the linkage between concentration and market
power.
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specification, the two-stage estimation procedure, and related identification assumptions are provided in Ap-

pendix B. In our main analysis we Winsorize estimated markups at the 1st and 99th percentiles, as is common

practice in the literature (Weche and Wambach, 2021; De Loecker et al., 2016).

A key challenge in this procedure arises from the fact that we observe only revenue, not physical output,

which introduces measurement error into the estimation of output elasticities and markups. In an imperfectly

competitive environment, changes in firm revenue reflect changes not only in output quantity but also in

prices. While Bond et al. (2021) question the informativeness of revenue-based markups, De Ridder et al.

(2022) show that although the average level of revenue-based markups may be biased, the dispersion of

these markups is informative of the true dispersion in settings with heterogeneous demand elasticities. Under

a Cobb-Douglas production function, revenue-based markup estimates are equal to true markups up to a

market-specific constant.22

Since our focus is on the marginal effect of temperature on markups rather than just markup levels, we

can address this measurement error by including market-year fixed effects in a semi-log regression. This

approach yields a consistent estimate of the semi-elasticity of markups with respect to temperature. Under a

more flexible production function, such as a translog specification, revenue-based markups are equal to true

markups multiplied by a non-linear function of input usage (De Ridder et al., 2022). In this case, we can still

identify the semi-elasticity by controlling flexibly for input usage in the semi-log regression.

4.2 Estimating Firm Productivity

Estimating the production function using revenue data yields revenue-based total factor productivity (TFPR),

which is measured as the residual between revenue output and inputs.23 In an imperfectly competitive envi-

ronment, temperature shocks influence both the quantity of output and the price at the firm level so that the

estimated TFPR impacts of temperature will reflect not only genuine changes in productivity, but also changes

in prices. To properly compute the consumption-equivalent welfare effects of temperature we need to separate

the effects on TFPQ from the associated price response, so we must directly recover TFPQ.

Here we show how to recover TFPQ based on market shares and estimated markups, given our model as-

sumptions. In the VES framework of Section 3.2.2, each firm’s equilibrium market share si jt can be expressed

as a combination of its markup µi jt and its productivity ϕi jt (TFPQ):

si jt =
µ

1−ρ

i jt ϕ
ρ−1
i jt

∑
n jt
ℓ=1 µ

1−ρ

ℓ jt ϕ
ρ−1
ℓ jt

, (18)

where ρ is the relevant elasticity parameter in the VES demand system. As mentioned in Section 3.2.2,

this equation implies that market shares are governed by the dispersion of productivity across firms within a

market-year (Atkeson and Burstein, 2008; De Loecker et al., 2021; Edmond et al., 2015, 2023). If all firms’

22The constant is equal to the weighted average of inverse markup among firms sharing the same production function, i.e., firms in
the same country by NACE4 industry group in our production function estimation.

23Appendix B provides details on the estimation of TFPR.
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productivity are scaled by a common market-year factor, their market shares remain unchanged. Therefore,

when we recover firm productivity ϕi jt with the observed market shares and revenue-based markups (estimated

up to a constant at the market level) using fixed point iterations, we can only recover the dispersion of TFPQ,

but cannot pin down the absolute level of TFPQ for each firm.

In a semi-log regression with logarithm productivity as the outcome variable, the market-year fixed effects

absorb the market-year level scale that contains the information of the absolute level of productivity within

a market-year. To the extent that the market-year fixed effects (i.e., the scale of the productivity) vary with

temperature, the regression based on relative TFPQ can only allow us consistently estimate the effect of

temperature on firm relative TFPQ.

4.3 Temperature Effects on Productivity and Markup

Empirical Specification We use the following model to estimate the effect of temperature on firm-level

productivity and markups:

yi jt = F(Ti jdt ;β)+G(Ri jdt ;ι)+αi +δ jt + εi jt , (19)

where yi jt is the log of TFPR, revenue-based markups for firm i in market j at year t. F(·) and G(·) are the

same as the prior specifications. We control for firm fixed effects (αi) to capture time-invariant unobservables

at the firm-level, and market-year fixed effects δ jt to capture market-specific trends and to absorb the normal-

izing constant. Standard errors are clustered two ways at the firm-level and market-year level to allow for

serial correlation within a firm across years and spatial correlation across firms within a market-year.

Temperature Effects on Productivity Figure 3 presents estimated effects of temperature on firm TFPR

using Equation (19). The figure shows that TFPR has an inverted U-shape relationship with temperature:

extreme heat and extreme cold significantly reduce firm TFPR. Table G3 reports the estimated coefficients

in Column (1).The estimates indicate that replacing a day between 40◦F and 80◦F with one at 100◦F would

decrease firm TFPR by 0.022 percent.

The magnitude of our estimated effects on productivity is consistent with findings from the existing lit-

erature. The most straightforward comparison is to Nath (2025), which finds that a day with a maximum

temperature of either –5°C or 40°C reduces annual revenue-based labor productivity in the manufacturing

sector by approximately 0.03 percent, relative to a day in the moderate temperature range of 5°C to 30°C.

Similarly, our results indicate that a day with a maximum temperature of 40°C reduces firm-level TFPR by

0.022 percent.

Another common approach to measuring temperature impacts is to use bins of daily temperature. We test

the robustness of our results to using temperature bins instead of splines in Figure F14. Our results suggest

that an additional 10 days per year above 90◦F instead of at 50-60◦F reduces firm-level TFPR by 0.20 per-

cent.In comparison, Costa et al. (2024), using Orbis firm-level data from 23 OECD countries, finds that 10
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Figure 3: Average Effect of Temperature Change on Firm TFPR
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Notes: This figure shows the average effect of temperature change on firm TFPR. Coefficients are estimated from Equation (19) with
the dependent variable being the log of firm TFPR. Standard errors are two-way clustered at the firm and market-year levels. The
blue bands show the 95% confidence interval.

additional extremely hot days (above 86◦F) per year reduce labor productivity by 0.16 percent. Based on U.S.

manufacturing data, Ponticelli et al. (2023) report that 10 additional days above 27°C (80.6◦F) lower total

factor productivity (TFP) by 0.4 percent and labor productivity by 0.7 percent. Using Chinese manufacturing

data, Zhang et al. (2018) estimate that 10 additional days above 90◦F reduce TFP by 5.6 percent. Our esti-

mated effects are closely aligned with findings from studies focused on European countries and the United

States, but are smaller than those reported in studies of China. These differences may stem from specification

differences, such as reference temperature bins, fixed effects, TFP estimation methods, or differences between

Europe and China in baseline climate conditions and adaptation capacities.

The above results show the average effect of extreme temperature on firms TFPR, an outcome that may

reflect changes in both TFPQ and prices. Next, we use Equation (18) to recover relative TFPQ and estimate

heterogeneous effects of temperature on relative TFPQ across firms of different sizes. Specifically, we interact

the temperature response function with the logarithm of each firm’s average revenue over the sample period,

as specified in Equation (4). Column (2) of Table G4 reports the estimated results. The coefficient on annual

cooling degree days (ACDD), defined as the difference between the daily maximum temperature and 80◦F,

is negative, indicating that high temperature reduces relative TFPQ for the baseline firm with a log average

revenue of zero. The interaction term between ACDD and the logarithm of firm revenue over the sample

period, ln(Rev), is positive and statistically significant, suggesting that the negative effect of high temperatures

on relative TFPQ is smaller in magnitude for larger firms.

Panel (a) of Figure 4 illustrates the predicted change of logarithm of relative TFPQ in response to daily

maximum temperature for firms at the 10th, 50th, and 90th percentile of the distribution of total revenue

across all firms, representing small, medium, and large firms. We find that extreme heat significantly reduces

relative TFPQ for small firms, has no effect on medium firms, and significantly increases relative TFPQ for

large firms. Since the dependent variable captures the relative distribution of TFPQ rather than its absolute
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level, the results suggest that large firms are more resilient to extreme heat shocks, moving upward in the

productivity distribution relative to smaller firms. It is possible that temperature shocks reduce the absolute

level of TFPQ for all firms to varying degrees. However, our model only captures changes in the distribution of

TFPQ and cannot identify changes in its absolute level. Simulation results in Figure D3 illustrate this scenario.

Panel (a) shows that absolute TFPQ decreases for all firms under a temperature shock, but the decline is less

severe for large firms. Panel (b) depicts how relative TFPQ changes across the firm size distribution: small

firms experience a decline in relative TFPQ, while large firms see an increase.24

As discussed above, the market-year fixed effects in Equation (4) absorb the market-level scale, removing

variation related to the absolute level of TFPQ. As a result, the estimated effects reflect changes in relative

TFPQ. Panel (b) of Figure 4 presents results from an alternative specification that includes firm and year fixed

effects, allowing us to exploit some variation at the market-year level. The figure shows that small firms

experience a significant decline in TFPQ, medium-sized firms show a smaller decline, and large firms are

largely unaffected. While we do not interpret this as direct evidence on levels of TFPQ, the results suggest

that productivity may be declining across all firms, with disproportionately larger effects on smaller firms.

The literature has documented similar heterogeneity in the impact of temperature on firm productivity,

showing that smaller firms are more vulnerable to extreme heat shocks than larger firms (Ponticelli et al., 2023;

Costa et al., 2024; Gagliardi et al., 2024). Several factors may contribute to this pattern. Larger firms typically

have more resources to adapt to climate risks, such as installing temperature control systems (Zivin and

Kahn, 2016; Somanathan et al., 2021). They may also have better access to finance and stronger managerial

capabilities. In addition, they may use higher-quality capital—such as better-insulated buildings and newer,

more energy-efficient machinery that is less prone to overheating (Ponticelli et al., 2023).

Our results suggest that large firms, such as those in the top 10 percent of the revenue distribution, expe-

rience more resilience under extreme heat. As discussed above, large firms, with better access to finance, are

more capable of responding to extreme heat shocks by investing in productivity-enhancing technologies or

higher-quality capital (e.g., air conditioning or automation). This resilience may lead to a relative productivity

advantage for large firms over smaller ones, resulting in a reallocation of market share, as shown in Section

2.2. Specifically, large firms may expand input usage while smaller firms contract. Supporting this mecha-

nism, Figures F3 and F4 show that large firms increase both labor and capital inputs in response to extreme

heat, whereas small firms reduce them.

The mechanism discussed above hinges on the idea that large firms are better able to invest in new capital

that makes production more resilient to extreme heat. To investigate this channel, we note that while our data

lack information on capital quality or vintage, newer entrants are more likely to adopt modern technologies

than incumbents. Therefore, we split the sample into firms that entered the market earlier versus those that

entered later. If newer firms tend to employ more modern and productive capital, we would expect them

to experience a stronger productivity gain from extreme heat—particularly among larger firms. The results,

24In the simulation, relative TFPQ is defined as ϕ̃
(rel)
i jt = µ̃i jt(si jt)

1
ρ−1 , where µ̃i jt is the estimated revenue-based markups.
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Figure 4: Heterogeneous Effects of Temperature Change on Firm Relative Productivity
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(b) Alternative Specification
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Notes: This figure shows the heterogeneous effects of temperature change on firm relative TFPQ by size. The coefficients of Panel
(a) are estimated from Equation (4). The coefficients of Panel (b) are estimated from an alternative specification similar to Equation
(4) but include firm and year fixed effects. The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th,
and 90th percentiles, respectively, of the revenue distribution across all firms. Standard errors are two-way clustered at the firm and
market-year levels. The blue bands show the 95% confidence interval.

presented in Table G6, support this hypothesis. The coefficients on the interaction between cooling degree

days and the log of average revenue are positive and statistically significant for both older firms (entered

before 2005) and newer ones (entered after 2005). However, the coefficient for newer firms is nearly three

times larger than that for older firms, suggesting a stronger positive response to extreme heat among newer

firms, likely as a result of adopting newer and better technologies.

Temperature Effects on Markups We estimate Equation (19) with the dependent variable being the log-

arithm of firm markups. As noted in De Ridder et al. (2022) and discussed in Section 4.1, revenue-based

markups are subject to bias from measurement error, with the extent of the bias depending on the joint distri-

bution of inputs and the elasticities of both demand and output. When regressing revenue-based markups on

temperature, this bias term enters the error term and may be correlated with temperature, potentially leading

to biased estimates. To address this concern, we flexibly control for input usage by including second-order
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polynomials of both labor and material costs in the regression model.

The average effects are reported in Figure 5 and column (3) in Table G3. The results show that extreme

heat tends to increase firm markups on average: a day with a maximum temperature of 100◦F raises firm

markups by approximately 0.0046 percent, compared to a day with a maximum temperature at the middle

range between 40◦F to 80 ◦F.

Figure 5: Average Effect of Temperature Change on Firm Markup
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Notes: This figure reports the average effect of temperature changes on firm markup. Coefficients are estimated from Equation (19),
with additional controls of second-order polynomial in variable input costs, including labor costs and material costs. Standard errors
are two-way clustered at the firm and market-year levels. The blue bands show the 95% confidence interval.

The heterogeneous effects are particularly noteworthy, as shown in Figure 6 and column (3) of Table G4.

In Table G4, the coefficient on extreme heat for the baseline firm is negative and statistically significant. In

contrast, the interaction term between annual cooling degree days and the log of average revenue is positive

and significant, indicating that the adverse impact of heat on markup diminishes—and even reverses—for

larger firms. Figure 6 illustrates the predicted change in log of markup for firms at the 10th, 50th, and 90th

percentiles of the average revenue distribution, showing that high temperatures reduce markups for small firms

but increase them for large firms.

4.4 Robustness Checks

Broader Market Definition Our main specification defines a market at the country-NACE4 industry level.

We also conduct the above analyses by defining a broader market at the country-NACE2 industry level. The

results are robust. We see similar concentration-increasing (F5), market share reallocation (F6), heterogeneous

effects on firm productivity (F7), and heterogeneous effects on firm markup (F8) under a broader industry

classification.

Full Sample Our baseline results are based on a balanced sample that includes firms that present in the

dataset throughout the sample period. For robustness, we perform firm-level analyses using the full sample.
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Figure 6: Heterogeneous Effects of Temperature Change on Firm Markup
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Notes: This figure reports the heterogeneous effects of temperature changes on firm markup. The labels p10, p50, and p90 refer to
firms whose average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all firms.
Standard errors are two-way clustered at the firm and market-year levels. The blue bands show the 95% confidence interval.

The result, presented in Figures F9, F10, and F11, confirm the main findings. We observe similar patterns of

heterogeneity in market share reallocation, firm productivity, and markups.

Alternative Temperature Response Functions We adopt two alternative specifications for the temperature

response function. The first approach uses temperature bins. We group daily maximum temperatures into eight

10-degree Fahrenheit bins: <30◦F, 30–40◦F, 40–50◦F, 50–60◦F, 60–70◦F, 70–80◦F, 80–90◦F, and 90◦F. Each

bin represents the number of days in a year that a firm experiences a daily maximum temperature within that

range, and the sum across all bins equals 365. This specification captures how changes in the distribution of

daily temperatures affect annual outcomes. In the regression analysis, we use the 50–60◦F bin as the omitted

reference category. The response function is defined as: F(T ) = ∑b̸=[50−60F) βb ·Binb, where Binb represents

the number of days in a year a firm experiences a daily maximum temperature within bin b.

Figure F12 shows that extreme high temperatures increase market concentration, measured by HHI and

CR4. Figures F13, F15, and F16 display the heterogeneous effects of temperature on firms’ market share,

relative TFPQ, and markup, respectively, for firms at the 10th, 50th, and 90th percentiles of the revenue

distribution. These figures reveal clear heterogeneity between large and small firms in response to extreme

heat, consistent with our baseline findings.

The second approach uses global polynomials. Following Carleton et al. (2022), we specify the tem-

perature response function as a fourth-order polynomial of the annual sum of daily maximum temperature.

Figures F17, F18, and F19 show the heterogeneous effects on firm market share, relative TFPQ, and markup,

respectively. These heterogeneous patterns align with our main findings.

Alternative Markup and Productivity Estimations A growing literature on production-function estima-

tion highlights how modeling choices—for instance, functional form (Cobb–Douglas vs. Translog vs. CES),

the use of revenue versus quantity data, the choice of variable input for markup calculation, and whether

productivity is factor-neutral or factor-augmenting—can all influence both estimated output elasticities and
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the resulting markups (De Ridder et al., 2022; Raval, 2023). Figures F20 and F21 present the average and

heterogeneous effects on firm productivity estimated using a Translog production function. Similarly, Figures

F22 and F23 report the corresponding effects on firm markups estimated using a Translog production func-

tion. These results are consistent with our main findings based on productivity and markup estimated from a

Cobb-Douglas production function specification.

4.5 More Evidence from Developing Countries

The above results are based on data from 12 EU countries, which are mostly developed economies located in

relatively temperate climate zones. To evaluate the external validity of our findings, we extend the analysis by

incorporating data from China and India, two representative developing countries that encompass extensive

regions with substantially hotter climates than those observed in most EU countries.

For China, firm-level data are drawn from the National Tax Survey Database. The dataset is jointly col-

lected by the Ministry of Finance and the State Administration of Taxation using a stratified random sampling

design. The data cover 2009–2015 and contain detailed annual information on inputs, outputs, employment,

and financial outcomes. Because the database is collected for tax administration and policy evaluation, key

variables are highly accurate, and the sample is representative across industries and firm sizes. The dataset has

been widely used in recent economics research (Liu and Mao, 2019; Chen et al., 2021, 2023; Li and Wang,

2025).

For India, we use firm-level data from the Annual Survey of Industries (ASI) covering the period 1999–2022.

The ASI is conducted annually by the Ministry of Statistics and Programme Implementation (MoSPI), Gov-

ernment of India. Compared with alternative data sources, such as the Census of Manufacturing Industries

(CMI) and the Sample Survey of Manufacturing Industries (SSMI), the ASI offers substantially broader cov-

erage and is broadly comparable to manufacturing surveys used in the United States and other industrialized

countries. The ASI provides annual data on output, the value of fixed assets, debt, cash on hand, inventories,

input expenditures, and the employment of workers and management. Owing to its wide coverage and data

quality, the ASI has been widely used in literature (Somanathan et al., 2021; Colmer, 2021; Nath, 2025).

We apply a series of standard data-cleaning procedures to construct the final analysis sample. First, we

restrict the sample to manufacturing firms to be consistent with data from other countries. Second, we drop

observations with missing or non-positive values for key variables (employment, material costs, labor costs,

and tangible fixed assets), exclude newly established firms, remove industries with fewer than 100 firms. To

avoid extreme values, we also winsorize key variables at the 1st and 99th percentiles.

The results are consistent with our main findings. In both countries, we define a market at the 4-digit

industry level. In China, Figure F24 shows evidence of increasing market concentration, measured by HHI

and CR4, in response to extreme high temperatures. Figure F25 presents heterogeneous effects on firm market

share: small firms lose market share while large firms gain market share following extreme heat shocks.

Regarding productivity, average TFPR does not exhibit a significant decline (see Figure F26). However, we
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find substantial heterogeneity in relative TFPQ across firm sizes. As shown in Figure F27, small firms’ relative

TFPQ decreases, whereas large firms’ relative TFPQ increases under extreme heat. Figure F28 displays the

average effect on firm markups. We observe a significant increase in average markups in Panel (a), although

the effect becomes insignificant once measurement-error controls are added in Panel (b). Consistent with

our main results, we again find heterogeneous effects across firm sizes: large firms’ markups increase under

extreme heat (see Figure F29).

For India, Figure F30 shows a similar increasing pattern of market concentration in response to high-

temperature shocks.25 Figure F31 documents heterogeneous effects on firm market share, with small firms

losing market share while large firms gain market share following extreme heat shocks. We also find sugges-

tive evidence of heterogeneous productivity responses: smaller firms experience declines in TFPR, whereas

larger firms exhibit increases in TFPR under extreme heat (see Figure F33). It is important to note that the

India data come with several limitations. First, the dataset does not include firm identifiers, which prevents

us from estimating firm-level regressions with firm fixed effects; we are only able to control for state fixed

effects. Second, because firm geolocations are unavailable, temperature exposure can only be extracted at the

state level, which reduces spatial variation in the temperature measure. For these reasons, we interpret the

firm-level results for India with caution.

4.6 Discussion: Beyond Temperature Shocks

These empirical findings illustrate how climate-induced productivity shocks reshape market structure in a

manner consistent with our endogenous markup framework. Smaller establishments, more vulnerable to

extreme heat and possessing fewer resources for adjustment, experience sharper productivity declines and

lose market share to larger incumbents. As production concentrates among larger firms, these firms move into

less elastic segments of demand and raise markups, while smaller firms—facing tighter margins and limited

pricing flexibility—see their markups compress. The net effect is an increase in aggregate market power

driven by climate-induced reallocation.

More broadly, the mechanisms we uncover are not specific to temperature shocks but speak to a gen-

eral class of climate disruptions that disproportionately affect smaller firms. Any shock that raises production

costs, disrupts labor supply, or introduces operational frictions—such as energy price spikes, supply chain dis-

ruptions, or extreme weather events—can generate heterogeneous responses by firm size. Smaller firms, with

more limited buffers, adjustment capacity, and financial constraint, are often less able to absorb such shocks,

leading to sharper declines in productivity, output, or market presence. In contrast, larger firms, endowed

with greater financial flexibility, diversified operations, and pricing power, are better positioned to withstand

or offset these shocks. The heterogeneous patterns we document under extreme temperature conditions thus

reflect a more general vulnerability of small firms to adverse climate shocks and a corresponding tendency for

market power to become more concentrated during periods of disruption.

25Because India has a higher average temperature, we use 50◦F–90◦F as the baseline temperature range.
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A further amplifying channel is endogenous adaptation. The literature has documented various margins of

adjustment to climate stress, including air conditioning adoption (Somanathan et al., 2021), directed innova-

tion toward heat-resistant technologies in agriculture (Moscona and Sastry, 2023), and supply chain diversifi-

cation (Castro-Vincenzi et al., 2024). However, these adaptation measures typically involve substantial fixed

costs—capital expenditures, R&D investments, or coordination costs—that are more easily borne by large

firms with greater financial capacity and the ability to spread fixed costs over larger output. When adaptation

is costly and scale-dependent, pre-existing productivity dispersion can become self-reinforcing: firms that are

already large and productive invest in adaptation, partially insulating themselves from future shocks, while

smaller firms remain exposed. The result is a dynamic in which climate shocks not only reallocate market

share in the short run but also widen the productivity gap over time, further entrenching market concentration.

5 Model Quantification

Our model in Section 3 illustrates how climate-induced productivity shocks can reshape market concentration,

raise aggregate markups, and reduce overall welfare. The empirical analysis in Sections 2.2.1 and 4 documents

the impacts of extreme heat on concentration, productivity, and markups. In this section, we quantify the

welfare implication of such impacts.

We begin by discussing the key model parameters needed to capture the welfare implications of heat-

induced productivity losses and market power, along with our choice to borrow parameter values from the

existing literature. We then use the structure of the model to simulate how extreme heat affects aggregate

productivity, markups, and welfare. Finally, we compare welfare outcomes under two different demand as-

sumptions (CES versus VES) to show how reallocation-driven market power affects the welfare costs of

extreme heat shock.

5.1 Demand Elasticity Parameters

In our climate-induced reallocation framework, heterogeneous productivity shocks drive the reallocation of

market shares across firms. Under a VES structure, this reallocation alters firms’ demand elasticities and

thus their markups. The final welfare impact depends on the change in aggregate productivity and aggregate

markup (equation (17)). Two elasticity parameters are central to this mechanism: the within-sector elasticity

of substitution, ρ , and the across-sector elasticity of substitution, η . Equation (10) illustrates that ρ governs

the sensitivity of a firm’s market share to its relative price. When ρ is high, goods within a sector are highly

substitutable, so small price differences can lead to sizable shifts in market shares. Meanwhile, η captures

how responsive sectoral shares are to changes in relative prices across different sectors. In short, ρ and η

together determine how market shares respond to cost or price shocks.

These two elasticity parameters also bound firms’ markups. Specifically, ρ and η imply that the firm-level

markup must lie between ρ

ρ−1 and η

η−1 . In the limit where a firm’s market share approaches zero (making it a
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very small player in its sector), it faces fierce intra-sector competition and charges a low markup close to ρ

ρ−1 .

In contrast, when a firm’s market share is close to one, it behaves more like a monopolist competing mainly

across sectors, so its markup approaches η

η−1 .

In addition to bounding the markup level, ρ and η jointly determine how sensitive markup changes in

response to changes in market share. From (9), we have:

1
µi jt

=

(
1− 1

ρ

)
−
(

1
η
− 1

ρ

)
si jt ,

so the difference 1
η
− 1

ρ
governs how strongly a firm’s markup changes with its market share.

To calibrate ρ and η , we draw on the key literature that estimates the two substitution elasticities. Edmond

et al. (2023) report values for ρ = 7.16 and for η = 1.15 while De Loecker et al. (2021) estimate ρ = 5.75 and

η = 1.2. For our baseline, we take a midpoint between these values and set our parameters as ρ = 6.45 and

η = 1.18. With these two elasticities, we can fully characterize how temperature-driven productivity shocks

translate into market share shifts and markup changes, and thus quantify their aggregate impact on social

welfare following Equation (17).

In Appendix E, we also present an alternative calibration where we estimate the two substitution elastic-

ities from our data using a simulated method of moments, following the procedure in Edmond et al. (2023).

The resulting parameter estimates align well with those reported in the literature, underscoring the robustness

of our chosen values.

5.2 Welfare Quantification

In this section, we quantify the welfare implications of climate-induced productivity shocks. We do so by em-

ploying an oligopolistic competition model with VES (variable elasticity of substitution) demand and feeding

the observed firm-level productivity shock from heat into the model to calculate changes in welfare. To un-

derscore the role of markups and reallocation in quantifying the welfare loss of climate-induced productivity

shock, we also compare the VES-based welfare costs to those generated under a CES framework, where

markups remain constant by construction.

The scenario we consider in this paper is the observed shifts in the distribution of daily maximum tem-

perature between 2000 and 2020, relative to a counterfactual scenario in which the temperature distribution

remained constant. Figure 7 depicts the change in cooling degree days above 80◦F across countries. The

extent of temperature change varies significantly across countries during this period. For example, countries

such as Spain and France have experienced increased exposure to extreme heat, while others, like Hungary,

have seen reduced exposure.

Simulation Method To measure how climate-induced temperature shocks affect aggregate productivity,

concentration, and markups, and to translate these changes into welfare outcomes, we first draw on the firm-

level productivity responses estimated in our regression analysis. Specifically, we use the size-specific impacts

29



Figure 7: Temperature Change between 2000 and 2020

Notes: This figure illustrates the change in the degree days per year with daily maximum temperature exceeding 80◦F by country

between 2000 and 2020.

of temperature shocks on firm TFPQ reported in Panel (b) of Figure 4, which controls only for firm and

year fixed effects. Recall that the TFPQ measure ϕ recovered from Equation (18) reflects true TFPQ scaled

by a market-level constant. When we include market-year fixed effects in the regression, this market-level

aggregate is fully absorbed, and the coefficients identify effects on relative TFPQ—that is, firm-level TFPQ

relative to the market-average level. In contrast, when we omit market-year fixed effects and control only for

year fixed effects, the market-level component is not fully absorbed. As a result, the estimated coefficients

partially capture changes in the level of TFPQ, though we acknowledge that these are not clean estimates of

true level effects. As a next step, we plan to obtain a subset of the data with quantity information, which

would allow us to recover true TFPQ levels and estimate level effects more directly.

Mirroring the nested demand structure in our VES model, we treat each country as a standalone economy

composed of multiple sectors (country × NACE4). For each country, we fed the observed temperature changes

between 2000 and 2020 into our estimated response functions described above to simulate the corresponding

predicted changes in firm TFPQ and markups. Predicted post-shock outcomes are constructed by adding these

simulated changes to the baseline firm-level values as of 2000. Finally, we aggregate the firm-level outcomes

to obtain aggregate TFPQ, aggregate markups, and consumption-equivalent welfare at the country level, as

described in Appendix C.4.3, for both the baseline year 2000 and the year 2020.

Table 2 presents the simulation results under the observed shifts in the daily maximum temperature dis-

tribution between 2000 and 2020. The first row shows the GDP-weighted country-level averages, while the
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second row (in brackets) indicates the minimum and maximum range across countries. Overall, country-

level simulations suggest that GDP-weighted aggregate TFP increases by 0.197%, the average markup rises

by 0.101%, and the consumption-equivalent welfare increases by 0.146%. As discussed in Section 4.2, our

method recovers firm-level TFPQ only up to a market-year constant (equation 18), meaning we identify

changes in relative productivity across firms rather than absolute levels. To the extent that heat also reduces

productivity through channels common to all firms within a market—as existing evidence suggests—the ag-

gregate TFP effects reported here likely understate the true productivity damage from rising temperatures.

The changes in productivity dispersion and the resulting reallocation across firms, however, are well identi-

fied, and it is this heterogeneity—and its implications for markups and welfare—that we emphasize in what

follows in Section 5.3.

Table 2: Summary of Simulated Welfare Change

TFP Change Markup Change Welfare Change

GDP-weighted Mean 0.197 0.101 0.146
Range [-0.338,0.486] [-0.059,0.215] [-0.441,0.452]

Notes: This table shows the changes in aggregate TFP, aggregate markup, and welfare under observed changes in daily maximum
distribution from 2000 to 2020 . We treat each country as a separate economy and simulate markup and welfare changes at the country
level. The first row within each panel shows the average change across country, weighted by Country-specific GDP in 2020. The
second row shows the minimum and maximum across countries. Welfare loss is Consumption-Equivalent Welfare Loss, as defined
in Appendix C.4.3.

Table 3: Summary of Country-Specific Changes

Country TFP Change Markup Change Welfare Change

Spain -0.338 0.207 -0.441
Italy -0.035 0.027 -0.049

Estonia -0.003 0.050 -0.028
Denmark 0.042 -0.001 0.043
Finland 0.113 0.020 0.103
France 0.231 0.215 0.123

Belgium 0.166 0.076 0.128
Poland 0.193 0.025 0.181

Slovakia 0.252 -0.022 0.263
Croatia 0.276 -0.021 0.287

Hungary 0.351 -0.059 0.381
Germany 0.486 0.068 0.452

Notes: This table summarizes the percentage change in Aggregate TFP, Aggregate Markup, and Consumption-Equivalent Welfare for
each country. Observations are ordered in the order of decreasing welfare loss.

Consistent with existing evidence on spatial heterogeneity of climate impact (Dell et al., 2012; Burke et

al., 2015), these temperature-driven productivity shocks and their aggregate effects vary significantly across

Europe. As shown in Table 5, Western and Southern European countries such as Spain and Italy experience
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Figure 8: Predicted TFPQ Change and Markup Change between 2000 and 2020

(a) TFPQ (b) Markup

Notes: This figure illustrates the welfare change predicted by the VES model by country between 2000 and 2020.

Figure 9: Predicted Welfare Change between 2000 and 2020

Notes: This figure illustrates the welfare change predicted by the VES model by country between 2000 and 2020.

the bulk of the welfare losses, whereas Eastern and Northern European countries (e.g., Croatia and Hungary)

enjoy net welfare gains. The direction of the welfare change largely reflects whether productivity is boosted

or reduced by the climate shock: countries experiencing negative productivity impacts incur welfare losses.
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Additionally, changes in markups introduce a further channel of welfare fluctuation—for instance, in Spain,

the adverse productivity effect is compounded by an increase in markups, exacerbating the overall welfare

loss.

It is noteworthy that our approach endogenizes market power, revealing that climate shocks can alter

markups and thereby amplify or mitigate the welfare effects of productivity changes from temperature ex-

tremes. In countries where productivity declines, the rise in markups can worsen consumer welfare beyond

the pure productivity loss, whereas in regions benefiting from mild productivity gains, lower markups may

partly buffer households from extreme temperature events. In the following subsection, we highlight the

importance of the market power channel in quantifying welfare loss by examining how these results may

be shaped by a key modeling choice: the assumption of variable versus constant markups. By contrasting

our baseline VES framework with a CES setting, we show that holding markups constant can significantly

misstate the true welfare cost of temperature shocks.

5.3 Role of Demand Assumption: CES vs. VES

In estimating the economic costs of climate change, the climate economics literature has largely relied on

the Integrated Assessment Models (IAMs) (Nordhaus, 1992; Hope et al., 1993; Tol, 1995). These models

as well as those used in more recent studies (Nath, 2025; Cruz and Rossi-Hansberg, 2021; Rudik et al.,

2022) have adopted the CES demand system because of its tractability and its well-documented ability to

fit macro-level relationship. Similarly, some recent firm-level empirical studies (Caggese et al., 2024; Shi

and Zhang, 2025) incorporate heterogeneous productivity impacts of temperature shocks, but they likewise

maintain a CES demand assumption. CES demand models implies constant markups and thus fail to account

for welfare changes due to potential markup changes from climate shocks. Recent studies in trade and macro

have examined the welfare implications of CES vs. VES demand (Arkolakis et al., 2019; Edmond et al., 2015;

Macedoni and Weinberger, 2022). A key finding is that the quantitative significance of using VES (relative

CES) demand crucially hinges on the degree of pre-existing dispersion and firm heterogeneity.

Our empirical analysis suggests a significant degree of heterogeneity not only in the level of firm produc-

tivity but also in the impact on productivity from temperature shocks. To better understand the role of VES

demand in estimating the welfare cost of temperature shocks, we compare climate-induced consumption-

equivalent welfare losses under two alternative demand structures: (1) a CES framework, in which reallo-

cation does not affect either the distribution or the aggregate level of markups, and (2) our baseline VES

framework, in which climate-driven reallocation does raise markup dispersion and the aggregate markup.26

Both scenarios are driven by the same heterogeneous productivity shocks at the firm level, which are quanti-

fied through our empirically observed heat-to-productivity damage function in Section 4.3. The key difference

lies in how markups are determined: under CES, markups are constant and market shares depend only on rela-

tive productivity; under VES, markups and market shares are jointly determined in equilibrium, with markups

26See Appendix C.4.3 for the details of the welfare loss formula in each specification.
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varying endogenously with firm size. As discussed in Section 5.1, the sensitivity of markups to market share—

governed by the gap between the two demand elasticities ( 1
η
− 1

ρ
)—determines the degree of markup-induced

misallocation and the change in the aggregate output tax.

Given the VES model framework and consumption-equivalent welfare metrics, we can decompose the

difference between welfare costs under VES and CES into two parts: the changes in misallocation from the

changing markup dispersion and the change output tax from the changes in aggregate markup.27 Equation (20)

summarizes this intuition:

[
Welfare LossVES − Welfare LossCES

]︸ ︷︷ ︸
(CES’s Welfare (Over)Underestimation)

≈
[
TFP lossVES − TFP lossCES

]︸ ︷︷ ︸
Misallocation

+ 1
2 ×∆(markup)︸ ︷︷ ︸

Output tax

. (20)

The first term on the right hand side captures how changes in markups due to climate change can either

magnify or mitigate TFP losses by changing the degree of markup-induced misallocation across firms, while

the second term reflects that a change in the aggregate markup can change employment and output via the

labor wedge channel. For example, in countries where temperature shocks have negative impacts and lead to

increased productivity dispersion, welfare calculation under VES is able to take into account the additional

misallocation and output tax induced by climate shocks and thus results in a higher welfare loss than in CES.

In other words, whether CES under or overestimate welfare costs of climate induced market power depends

on whether the realized shock increase or decrease markups dispersion and level.

Table 6 summarizes the decomposition of Equation (20) at the country level: the first column (“Welfare

Loss (VES-CES)”) shows whether CES over- or underestimates the welfare cost for each country, and the

subsequent columns (“Misalloc” and “Output Tax”) report the two decomposition components. The ‘Misal-

loc’ column captures the aggregate productivity loss attributed to markup dispersion, while the ‘Output Tax’

column captures how changes in the aggregate markup changes the labor wedge and therefore total output.

Positive entries in the first column indicate that CES underestimates the welfare loss relative to VES, whereas

negative entries indicate an overestimate. Some countries, such as Spain, see an increase in aggregate markups

(“Output Tax”) as well as increased misallocation, amplifying the welfare cost under VES and thus leading

CES to understate the damage. Others experience a drop in equilibrium markups, causing CES to overshoot.

In all cases, the final welfare difference reflects contributions of comparable magnitude from two channels:

the misallocation channel, tied to differential TFP losses, and changes in the aggregate markup.28 For the

more affected countries, the magnitude of this underestimation is substantial: in Spain, CES misses over 40
percent of the total welfare cost from heat exposure.29

Our quantitative findings indicate that temperature shocks could lead to a non-negligible welfare loss

via the productivity shock channel where the direct productivity loss is amplified by endogenously rising

27Appendix C.4.3 provides details on the derivation of this decomposition
28Changes in aggregate markup can further be decomposed into the between-firm and within-firm effects. G9 shows the country-

specific decomposition of aggregate markup. Both the within and between components are important in explaining changes in
aggregate markup.

29Calculated as the ratio of the CES-VES welfare difference to the total welfare loss under VES (0.189/0.441).
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Table 4: Summary of Simulated Welfare Change (CES) version

∆TFP(%) ∆Markup(%) ∆Welfare(%)

GDP-weighted Mean 0.231 0 0.231
Range [-0.252,0.497] [0,0] [-0.252,0.497]

Notes: This table shows the changes in aggregate TFP, aggregate markup, and welfare under observed changes in daily maximum
distribution from 2000 to 2020 . We treat each country as a separate economy and simulate markup and welfare changes at the country
level. The first row within each panel shows the average change across country, weighted by Country-specific GDP in 2020. The
second row shows the minimum and maximum across countries. Welfare loss is Consumption-Equivalent Welfare Loss, as defined
in Appendix C.4.3.

Table 5: Summary Of Country-Specific Changes (CES)

Country TFP Change Markup Change Welfare Change

Spain -0.252 0 -0.252
Italy -0.038 0 -0.038

Estonia 0.012 0 0.012
Denmark 0.043 0 0.043
Finland 0.113 0 0.113
Belgium 0.188 0 0.188
Poland 0.200 0 0.200

Slovakia 0.249 0 0.249
Croatia 0.265 0 0.265
France 0.324 0 0.324

Hungary 0.339 0 0.339
Germany 0.497 0 0.497

Notes: This table summarizes the percentage change in Aggregate TFP, Aggregate Markup, and Consumption-Equivalent Welfare for
each country. The calculation is based on a CES demand environment where markup is exogenously determined, by construction.
Observations are ordered in the order of decreasing welfare loss.

market power (higher markups) and the resulting misallocation of resources. By using a VES demand system,

our analysis uncovers welfare effects that a standard CES model would miss. In particular, the CES and VES

comparison reveals that ignoring heterogeneous markup adjustments can either understate or overstate the true

welfare impact, depending on how such distortions manifest. In doing so, our framework brings into climate

economics literature insights from trade and industrial organization on firm heterogeneity and misallocation.

Discussion: Comparison with Trade Literature Our CES-VES comparison connects to the recent trade

literature that quantifies gains from trade under endogenous markups (Edmond et al., 2015; Arkolakis et al.,

2019). A key finding from this literature is that, contrary to the intuition that trade-induced competition

should reduce markups and amplify welfare gains, CES and VES frameworks yield quantitatively similar

welfare estimates for trade liberalization. Arkolakis et al. (2019) show that this similarity arises because

trade opening generates two offsetting forces: as foreign firms gain market access, their markups rise, while
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Table 6: Comparison of Welfare under CES and VES

Country Welfare Loss (VES - CES) Misallocation Output Tax

France 0.200 0.093 0.108
Spain 0.189 0.086 0.104

Belgium 0.059 0.021 0.038
Germany 0.046 0.012 0.034
Estonia 0.040 0.015 0.025
Poland 0.020 0.007 0.012
Italy 0.011 -0.003 0.014

Finland 0.010 0.0003 0.010
Denmark -0.0001 0.0003 -0.0004
Slovakia -0.015 -0.004 -0.011
Croatia -0.022 -0.012 -0.011

Hungary -0.042 -0.012 -0.030

Notes: This table compares simulated welfare outcomes under VES and CES. For each country, we report the difference in welfare
losses ( Welfare LossVES −Welfare LossCES ) alongside its decomposition into a misallocation channel and an output-tax channel, as
given by Equation (20). A positive value in the Welfare Difference column indicates that the climate-induced welfare cost is larger
in the VES model—i.e., the CES specification underestimates the overall welfare loss. The “Misallocation” component corresponds
to the difference in aggregate TFP losses between the two specifications, while the “Output Tax” component captures one-half of the
difference in aggregate markups, reflecting how markup variation can amplify or mitigate the overall climate shock.

domestic firms facing increased competition see their markups fall. These opposing movements largely cancel

in aggregate, rendering the CES-VES distinction quantitatively modest.

Our setting differs in a fundamental way. Climate shocks have no analogous two-sided structure—there is

no "foreign" and "domestic" moving in opposite directions. Instead, extreme heat operates as a one-directional

force on the productivity distribution: it disproportionately harms small firms while leaving large firms rela-

tively unaffected. This asymmetric shock increases productivity dispersion, shifts market share toward high-

markup incumbents, and raises aggregate markups without a countervailing pro-competitive effect. As shown

in Table 6, failing to account for endogenous markups leads to understated welfare losses (or overstated wel-

fare gains) from heat exposure in EU manufacturing.

More broadly, our findings suggest a condition under which the CES-VES distinction becomes quanti-

tatively important: when shocks differ systematically by firm size in a way that interacts with and amplifies

pre-existing productivity dispersion. As documented in Section 4.3, extreme heat disproportionately reduces

productivity for small firms while leaving large firms relatively unaffected—a pattern likely driven by costly

adaptation, financial constraints, and other size-dependent channels. Such shocks widen the gap between

high- and low-productivity firms, generating systematic reallocation toward high-markup incumbents. Ac-

counting for the resulting misallocation through a VES framework can matter substantially for quantifying

aggregate productivity damages.
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6 Conclusion

This paper examines the impact of temperature shocks on market structure and market power, and quanti-

fies the associated welfare costs. Using firm-level data from the manufacturing sector in 12 EU countries,

we find that extreme heat reduces firm productivity and increases markups on average. However, the ef-

fects vary across firms of different sizes, both in magnitude and direction. Productivity increases among the

largest firms but declines among smaller firms. These heterogeneous impacts lead to a reallocation of market

share from small to large firms, resulting in greater market concentration and higher aggregate markups. Tak-

ing into account both the productivity and markup channels, we find substantial variation in welfare effects

across countries, with the direction depending on local temperature exposures. Notably, our findings under-

score the importance of endogenizing markups: comparing welfare losses under VES versus CES demand,

we show that standard CES frameworks can substantially understate the true welfare cost of temperature

shocks. In Spain, for example, CES misses over 40 percent of the welfare loss. This underestimation arises

because extreme heat shock disproportionately harms small firms while leaving large firms relatively unaf-

fected—systematically shifting market share toward high-markup incumbents.

Our study contributes to the literature on the economic costs of climate change by examining how tem-

perature shocks affect firm productivity and, importantly, market power. Methodologically, it highlights the

importance of endogenizing markups by moving beyond the conventional constant elasticity of substitution

demand framework. In doing so, the paper bridges the climate economics literature with the macroeconomics

and industrial organization literature that seeks to understand the causes and consequences of rising market

power.

While our evidence centers on extreme heat, the scale-biased nature of climate change extends beyond

direct temperature shocks to encompass both adaptation investments and environmental policy responses.

Consider coastal flooding: flood-protection investments—such as the raised-floor distribution centers built in

Bangkok’s logistics parks after the 2011 floods, or the perimeter flood walls now common around U.S. coastal

factories—are capital-intensive and therefore more accessible to large, multi-site firms. Early work, such as

Fatica et al. (2024) on European floods and Seetharam (2018) on U.S. hurricanes, documents within-firm re-

allocation and differential exit patterns across firm sizes, yet the sign and magnitude of concentration changes

vary by hazard and context. Similarly, compliance with environmental regulations—whether emission stan-

dards, carbon taxes, or mandated abatement technologies—often entails substantial fixed costs that dispropor-

tionately burden smaller producers. To the extent that climate policy tightens in response to warming, these

regulatory channels may further amplify the market-power effects we document. If these channels similarly

generate forces favoring larger firms, the CES-VES distinction we identify—and the resulting underestimation

of welfare costs under standard frameworks—would apply broadly. Determining whether such amplification

is a general cost of climate change—across hazards, adaptation margins, and policy instruments—therefore

remains an open research agenda.

We acknowledge two important limitations of our study related to the temporal and spatial scope of the
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analysis, and we discuss directions for future research. First, our analysis focuses on short-term impacts by

examining reallocation driven by contemporaneous temperature shocks. Over the longer term, however, in-

creased market concentration may reduce incentives to innovate in climate-resilient technologies, dampening

industry dynamism and slowing technological progress. Future research could incorporate data on investment,

industry turnover, and adaptation mechanisms to better understand the long-term effects on market structure.

Second, our current analysis focuses on 12 European economies. Although we uses China and India data

as robustness checks, our analysis does not cover a broad range of the developing world. On one hand, many

developing countries, especially those near the equator, face more intense and frequent heat extremes (Dell

et al., 2012; Burke et al., 2015), and higher baseline temperatures may imply a greater marginal impact on

productivity as warming occurs. On the other hand, adaptation to climate shocks may be more constrained

in developing countries by weaker financial systems, pervasive informality, and limited managerial capacity

(Bloom et al., 2013; Hsieh and Klenow, 2009). These factors could exacerbate the heterogeneous productivity

effects and the resulting market share reallocation. Therefore, it stands to reason that the climate impact and

associated welfare loss, through both productivity and markup channels, may be even larger in developing

countries than what we estimate in the European context. We are currently extending our analysis to a broader

set of countries.
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A Orbis Data

Data Cleaning There are several type of firm accounts available in our Orbis dataset: Consolidated(consolidation

code C1, C2), Unconsolidated(U1,U2), and Limited Financial(LF). We use only Unconsolidated accounts

data from Orbis, as we want to match the economic variables of a plant to its specific location and the lo-

cal temperature shock it experiences, as well as to avoid double counting. Restricting the sample to be only

unconsolidated accounts also better approximates specific product market, which further validates the produc-

tion function estimation approach. On the other hand, consolidated accounts observations might not reflect

the output of the local plant, as it can be balance sheet data of a headquarter, instead of a specific plant.

Using only unconsolidated accounts information can understate the level of concentration measure, since

it can ignore firm-to-firm linkages within different business group (Kalemli-Ozcan et al., 2015). The literature

has adopted different approaches when it comes to measuring concentration: whether it is at the individual

firm-level or the business group level. Each of these approach has its advantages and limitations, depending

on the data availability and research questions 30. However, in our context, we believe focusing on individual

plants’ performances are more appropriate for analyzing the effect of local temperature shock. In addition,

across most countries and industries, unconsolidated firms account for more than majority of the market shares

(Bajgar et al., 2020).The broad trend of concentration change in the EU carry through, regardless of different

unit of measures, though the trajectory is a bit different(Bajgar et al., 2019b).31

From our production function estimation, our data cleaning procedure closely follows Weche and Wambach

(2021) and Ganglmair et al. (2020), albeit a bit less restrictive. Observations that have missing or insensible

data in these variables are dropped : OPERATING_REVENUE_TURNOVER, NUMBER_OF_EMPLOYEES.

We also keep only unconsolidated accounts, as in the context of production function estimation unconsoli-

dated accounts are closer to a product market compared to consolidted.

Many researchers using Orbis tend to impose a fixed cutoff threshold for number of employees to address

the problem of Orbis under-representing small firms. Doing so can ensure a more stable coverage over time

and a better defined distribution. However, it would also diminish the ability to approximate the true distri-

bution of firms, especially for the micro firms, which can be more vulnerable to climate change. Imposing a

fixed cutoff threshold across different country-industries can also be misleading, as it can cutoff different parts

of the firm distribution in different country-industries. Therefore, in the context of our research questions, we

think it’s also crucial to analyze how smaller firms are affected by climate change. Thus, we adopt a less

restrictive data cleaning approach than the literature and do not impose any size restrictions at the moment.

The climate data extraction procedure requires data on geographical locations. Our preferred geographical

variables are longitude and latitude of a plant. When those are not available, we use street address or postcode

to geocode the location. Observations that do not have any of these geographical variables are dropped.

Deflator For output measures, we use Producer Price Index data from Eurostat, which is available at the

country by NACE 2-digit industries level. For labor cost, we use Labor Cost Index at the same country by

NACE 2-digit industries level.

30For a more complete discussion on the accounts types in Orbis, see Bajgar et al. (2020)
31For more discussions on different approaches to calculate concentration in EU, see Bajgar et al. (2019b)
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Imputation Following Gal (2013), we perform internal imputation for the Value-added and Material Costs

variable before the production function estimation. As suggested by Bajgar et al. (2020) ,imputation of value

added using information on wage bill and earnings can partially improve the representativeness of Orbis data,

which has been a well-documented problem with Orbis. In particular, the mean characteristics and the repre-

sentativeness of the bottom half of firm distribution is closer to that of the true population after imputation.

So far our imputation is internal, using information from within the Orbis data. External imputation, which

requires industry level wage bill data, is also possible. However, the effect of external imputation is minimal

and can diminishes the dispersion within industries (Bajgar et al., 2020). Hence, we plan to incorporate the

external imputation in the later versions of the draft as a further robustness check, while keeping the internal

imputation as our primary imputation method.
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B Production Function and Markup Estimation

This section describes our empirical approach to estimate the production function and markups based on

firm-level revenue and input data following the approach in De Loecker and Warzynski (2012).

Cost-minimization Consider the following production function for firm i in time t:

Qit = F(X1
it , ...,X

V
it ,Kit ;β )exp(ωit), (B.1)

where ωit is the productivity. Under cost-minimization,

L(X1
it ...X

V
it ,Kit) =

V

∑
v=1

PXv

it Xv
it + ritKit +λit(Qit −Qit(·)), (B.2)

where λit is the marginal cost of changing output. The first-order condition with respect to variable input Xv
it

implies:

PXV

it = λit
∂Qit(·)

∂XV
it

. (B.3)

Given the definition of output elasticity of variable input (θ XV

it ),

θ
XV

it =
∂Qit(·)

∂XV
it

XV
it

Qit︸ ︷︷ ︸
Output elas. wrt var. input

=
1

λit︸︷︷︸
1/MC

PXV

it XV
it

Qit︸ ︷︷ ︸
var. exp. share

= µit
PXV

it XV
it

PitQit
, (B.4)

where the last equality follows from µ = P
MC . This implies:

µit =
θ XV

it

αXV

it

. (B.5)

That is, firm markup can be written as the output elasticity of variable input XV , θ XV

it , over the revenue share

of input XV , αXV

it . The latter is defined as the total cost of XV over total revenue.

Production Function and Output elasticity Consider the following production function, where Qit is de-

noted as the output of firm i in time t; Xm
it as the variable input m, Kit as the capital, ωit as the productivity,

and εit as idiosyncratic shocks.

Qit = F(X1
it , ...,X

V
it ,Kit ;β )exp(ωit)exp(εit), (B.6)

Take logarithm on both sides,

qit = f (x1
it , ...,x

V
it ,kit ;β )+ωit + εit . (B.7)
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Production Function F(·) is Cobb-Douglas, with labor being the variable inputs and capital being the

dynamic input.

qit = βllit +βkkit . (B.8)

Under this specification of the production function, we can then calculate the output elasticity of labor

input as the following:

θ̂
L
it =

∂ lnF(·)
∂ lnLit

=
∂ f (·)
∂ lit

= β̂l (B.9)

We estimate the production function at the country by NACE4 industry level, i.e., firms in the same

country by NACE4 industry share the same production function. We follow the proxy method and two-stage

procedure in De Loecker and Warzynski (2012). Given the estimated production function coefficients, we

can then use the output elasticity at the country by NACE4 industry level, and the firm level labor and capital

input to calculate firm-level output elasticity, from which we can then calculate markups.

From Equation (B.5),

µ̂it = θ̂
L
it ·

PitQit

WitLit
. (B.10)

Firm-level markup is the product of industry output elasticity with respect to labor and the inverse of firm’s

labor revenue share.

Two-step GMM The estimation procedure consists of two steps. The first stage is for purging out measure-

ment errors ε . The second step uses moments conditions to estimate the β coefficients. The proxy variable,

material costs in our case, is assumed to be a function of productivity and capital inputs. The inversion of the

material demand function gives:

ωit = ht(kit ,mit ,zit),

where zit are additional industry and time fixed effects that can affect material demand other than productivity

and inputs. The production function then becomes

yit = f (lit ,kit)+

Productivity ωit︷ ︸︸ ︷
ht(mit ,kit ,zit)︸ ︷︷ ︸

Expected Output φ̂it(lit ,kit ,mit ,zit)

+εit .

The residuals from the first-stage is then

ε̂it = yit − φ̂it(lit ,kit ,mit ,zit),

and the productivity can be expressed as a function of β ’s

ωit(β ) = φ̂it(lit ,kit ,mit ,zit)− f (lit ,kit).
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Productivity is assumed to follow a first-order Markov Process:

ωit = g(ωit−1)+ξ it,

where ξit is the productivity shock. The key identification assumption comes from the orthogonality between

current productivity shock and current state variable (capital), as well as between current productivity shock

and lagged free variable (labor). Namely, capital inputs are decided dynamically, while labor adjusts more

freely and respond to contemporaneous productivity shock. Therefore, in the second stage, β̂ are derived from

Moments conditions:

E

(
ξt(β ) ·

(
Kt

Lt−1

))
= 0.

Once β̂ is estimated, we can then derive firm-level productivity ω̂it and output elasticity θ̂l and θ̂k.

Discussion on limitation Production quantity data is needed for production function estimation in order to

estimate the level of markups. However, standard firm-level data sets like ours only contain revenue but not

quantity. As shown by De Ridder et al. (2022), revenue-based markup estimates contain useful information

about the dispersion of markup and the trend of markup over time, as they correlates with key variables such

as market shares. In particular, revenue-based markups can be used to obtain one of our empirical objectives,

to estimate the gradient of firm markups with respect to temperature shocks with appropriate controls such as

the industry fixed effects.
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C Model

C.1 Additional Details

Profits and Exit Using MCi = γi(T ) W
ϕi

and the constant-markup pricing, firm i’s profit function becomes

π(ϕi) = γi(T )1−σ 1
σ

E
(

P
σ

σ −1

)σ−1
ϕ

σ−1
i − f , (C.11)

Following Melitz (2003), there is a unique productivity cutoff ϕ∗ at which profits are zero:

π(ϕ∗
i ) = 0 =⇒ ϕ

∗
i = γi(T )

( f σ

E

) 1
σ−1 σ −1

σ P
. (C.12)

Proposition 1. An increase in γi(T ) (e.g., higher temperature) raises the zero-profit cutoff, thus pushing out

lower-productivity firms.

Figure C1: Exit Cutoff Under Climate-Induced Cost (CES)

Note: This figure plots firm profit as a function of productivity ϕ in the CES setting. ϕ∗ is the zero-profit threshold
below which firms exit the market.

Heterogeneous Pass-Through and Markup Elasticity The previous analysis emphasized the impact of

industry-wide temperature shocks on equilibrium outcomes, reflecting our empirical setting in which local

temperature fluctuations affect all firms in a particular region. Nonetheless, it is also useful to introduce

the concept of differential pass-through under an endogenous-markup model, where individual firms’ pricing

decisions respond to idiosyncratic cost shocks.32 Recognizing heterogeneity in cost pass-through across firms

32This discussion is partial-equilibrium in nature, keeping competitors’ prices fixed and focusing on how a single firm adjusts its
own price in response to its own cost shocks.
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of different sizes can provide insights into the mechanisms behind shifts in market structure. Our notation

follows Arkolakis and Morlacco (2017).

Let Γ(s) denote the elasticity of the markup µi j with respect to the firm’s market share si j:

Γ(si j) ≡
∂ log µi j

∂ logsi j
=

(ρ −η)si j

ρ − si j(ρ −η)
, (C.13)

where Γ(si j)> 0 and increases with si j for the relevant range of market shares observed in the data. Intuitively,

larger firms’ markups become more sensitive to changes in market share.

Define Φi j as the elasticity of firm-level prices with respect to the temperature-induced productivity shock

γi j(T ), holding the aggregate price index constant:

Φi j =
∂ logPi j

∂ logγi j

∣∣∣∣
Pj

, (C.14)

where Pi j is the firm’s price and Pj. Under partial equilibrium, one can show from the firm’s optimal pricing

equation that markup elasticity and cost pass-through are inversely related:

Φi j(si j) =
1

1+Γ(si j)
. (C.15)

Because Γ′(s) > 0, it follows that Φ′(s) < 0: larger firms have higher markup elasticity and therefore

lower cost pass-through. In the face of an idiosyncratic productivity shock, larger firms can more flexibly

adjust their markups, stabilizing both price and market share. In contrast, smaller firms face less flexible

markups and must pass on a greater share of their cost increases to final prices. Thus, higher markup elasticity

serves as a buffer against cost shocks and reflects the degree of market power a firm has.

To illustrate, decompose the firm’s log price change:

P̂i j = Γ(si j) · ŝi j︸ ︷︷ ︸
market power channel

+ m̂ci j︸︷︷︸
productivity channel

,

where m̂ci j > 0 captures the increase in marginal cost following a negative productivity shock. Larger firms

(high Γ) absorb more of this shock by reducing their markups, thereby mitigating the impact on P̂i j and ŝi j.

Smaller firms lack this margin of adjustment and must raise prices more, losing additional market share.

In contrast, under standard CES (Γ = 0 and Φ = 1), markups are constant and cost pass-through is com-

plete, leaving no room for heterogeneous price adjustments across firms. This assumption contradicts empiri-

cal findings of variable pass-through rates and underscores the importance of modeling endogenous markups

when analyzing reallocation and market structure. Nonetheless, because climate shocks typically affect all

firms within a given geographical region, it can be challenging to empirically disentangle the ‘market power

channel’ from the ‘productivity channel.’ Observed changes in prices and market shares likely combine both

forces.
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C.2 Derivations of Qualitative Predictions

C.2.1 Derivation of Proposition 1 on Exit Cutoff

Proof.

∂ϕ∗

∂T
=

∂

∂T

(
γ(

f σ

E
)

1
σ−1

σ −1
σP

)
(C.16)

=

(
(

f σ

E
)

1
σ−1

σ −1
σP

)
· ∂γ

∂T
(C.17)

Given that extremely hot temperature decrease productivity more ( ∂γ

∂T > 0), the partial derivative of exit cutoff

with respect to temperature is also positive. The climate-induced productivity shock γ essentially increases

the ex-ante productivity needed to earn the same profit.

C.2.2 Derivation of Changes in Aggregate Markup under Climate Shocks

Proof. Let µ≡ ∑
N
i si ·µi be defined as the sales-share weighted aggregate markup. Taking the total derivative

of aggregate markup with respect to the temperature-induced productivity shock γ(T ), we have

dµ
dγ

=
N

∑
i

dsi

dγ
·µi︸ ︷︷ ︸

Between

+si ·
dµi

dγ︸ ︷︷ ︸
Within

 (C.18)

The between component captures the effect of temperature shock on market share changes, holding firm

markup constant. It measures the contribution of reallocation of market shares to aggregate markup change.

The within component measures the aggregate effect of firm-level markup change, holding market share fixed.

From equation (9), we can show that demand elasticity is decreasing and convex in market share

dεi

dsi
=

ηρ(η −ρ)

(η(si −1)−ρsi)2 < 0, given ρ > η > 1 (C.19)

d2εi

dsi
2 = 2

(
1
η
− 1

ρ

)2

·
(

1− si

ρ
+

si

η

)−3

> 0 (C.20)

Likewise, from equation (9), we can also show that markup is increasing and convex in market share

( dµi
dsi

> 0 and d2µi
dsi2

> 0)

Between Component

Between =
N

∑
i=1

dsi

dγ
·µi. (C.21)
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From the market share equation (10), the effect of changes in temperature shock γ can be expressed as

dsi

dγ
= (1−ρ) · si

(
d lnPi

dγ
−

N

∑
j=1

s j
d lnPj

dγ

)
. (C.22)

Without loss of generality, suppose that d lnPi
dγ

is smaller (less negative) for larger firms, under the assumption

of productivity-decreasing shock. This implies that larger firms’ prices increase less compared to smaller

firms when γ increases, decreasing their relative prices and increasing their market share.

Given that larger firms gain market share ( dsi
dγ

> 0 for large si) and have higher markups (since µi increases

with si), while smaller firms lose market share ( dsi
dγ

< 0 for small si) and have lower markups, the overall sum

is likely positive.

Within Component

Within =
N

∑
i=1

si ·
dµi

dγ
=

N

∑
i=1

si ·
dµi

dsi
· dsi

dγ
. (C.23)

Since dµi
dsi

> 0 and d2µi
dsi2

> 0, and larger firms have large si and dsi
dγ

> 0, their contributions to the within

component are positive and weighted more heavily due to larger si. Smaller firms contribute negatively, but

their si are smaller, so their negative contributions are less significant.

Combining the positive effect on both the Between and Within components, we conclude that aggregate

markup will likely increase under a productivity decreasing temperature shock γ . The convexity of demand is

crucial for this conclusion. We further test this prediction in our simulation section.

C.2.3 Derivation of Changes in HHI Under Climate Shocks

Let N be the total number of firms in the market. Let si denote the market share of firm i, where si ≥ 0 and

∑
N
i=1 si = 1. The Herfindahl-Hirschman Index (HHI) is defined as:

HHI =
N

∑
i=1

(si ×100)2 = 10,000×
N

∑
i=1

s2
i . (C.24)

Under the assumption of productivity-decreasing shock and Proposition ??, temperature shock essentially

leads to a mean-preserving spread of a market share distribution. More specifically, while the mean of

market share is constant in a balanced sample (s̄ = 1
N ∑

N
i=1 si =

1
N ), the variance of market share increases.

The variance of market share is defined as

σ
2 =

1
N

N

∑
i=1

(si − s̄)2 =
1
N

N

∑
i=1

s2
i − s̄2 (C.25)

Rewriting equation (C.25) as

N

∑
i=1

s2
i = Nσ

2 +Ns̄2 = Nσ
2 +

1
N
. (C.26)
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From (C.26), it is evident that industry HHI is an increasing function of the variance of market shares.

Intuitively, the more dispersed the market share, the larger gap between large and small firms, the more

concentrated an industry is.

Under a temperature shock that leads to reallocation and mean-preserving spread of market share distri-

bution, variance of market share σ increases, increasing the aggregate HHI.

C.3 Derivation of Labor Demand

Labor demand is the sum of production labor as well as labor used for overhead. Time subscripts are dropped

for clearer exposition. Let l̃ be labor used for production, lF be the labor used for overhead. Ξ denotes the

misallocation forces.

Firm Production Labor Demand

l̃d
i j =

yi j

ϕi j

=
Y
ϕi j

·

( µ j
ϕ j
µi j
ϕi j

)ρ

·

(
µ j

W
ϕ j

P

)−η

Sectoral Labor Demand

ld
j =

ni j

∑
i=1

l̃d
i j + lF

j

=
ni j

∑
i=1

l̃d
i j +ni j f

=

(
Y
ϕ j

)
·
(

Pϕ j

W µ j

)η

·
ni j

∑
i=1

[(
µi j

µ j

)−ρ(
ϕi j

ϕ j

)ρ−1
]

︸ ︷︷ ︸
Ξ j

Aggregate Labor Demand

Ld =
∫

j
ld

j d j+
∫

j
n j f d j

=
Y
ϕ
·
(

Pϕ

MW

)η

·

[∫
j

(
ϕ j

ϕ

)η−1(
µ j

M

)−η

Ξ jd j

]
︸ ︷︷ ︸

Ξ

+
∫

j
n j f d j.
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C.4 Full Model Details

In this section, we present the complete model setup, following Section 5.2, and include intermediate inputs

and capital in production. Our framework closely follows Edmond et al. (2023).

Our goal is not to provide methodological or theoretical innovations on the model of Edmond et al. (2023).

Rather, we use their endogenous markup framework to emphasize a different aspect of interest in our setting.

First, we discuss the definition of TFPR in the presence of endogenous markups—something their paper does

not explicitly highlight but is of particular interest to our setting33. Second, while Edmond et al. (2023) is pri-

marily concerned with how heterogeneous markups distort the decentralized economy relative to a planner’s

efficient (markup-free) allocation, our focus lies in comparing how different assumptions about market struc-

ture (constant vs. endogenous markups) influence the quantification of the welfare impact of a productivity

shock.

C.4.1 Model Setup

Representative consumer.—The representative consumer maximizes:

∞

∑
t=0

β
t
(

logCt −ψ
L1+ν

t

1+ν

)
, (C.27)

subject to:

Ct + It =WtLt +RtKt +Πt , (C.28)

where Ct is aggregate consumption, it investment, Wt wage, Rt rental rate, Πt aggregate profits, and Lt labor

supply.

The labor supply condition is:

ψCtLν
t =Wt . (C.29)

Final-good producers.—The final good Yt can be used for consumption Ct , Investment It , and Materials

Mt :

Yt =Ct + It +Xt (C.30)

The final good Yt is a CES bundle of sector outputs y jt for sectors j ∈ [0,1]:

Yt =

(∫ 1

0
y

η−1
η

jt d j
) η

η−1

, (C.31)

where η > 1 is the across-sector elasticity. Final good is the numeraire, and sector price index Pjt satisfies:

1 =

(∫ 1

0
P1−η

jt d j
) 1

1−η

. (C.32)

33Our climate induced reallocation story essentially boils down to a TFPQ to TFPR distribution change
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Within sectors.—Sector j consists of n jt firms producing differentiated goods yi jt aggregated via CES:

y jt =

(
n jt

∑
i=1

y
ρ−1

ρ

i jt

) ρ

ρ−1

, (C.33)

where ρ > η > 1 is the within-sector elasticity.

Relative prices satisfy:

Pi jt

Pjt
=

(
yi jt

y jt

)− 1
ρ

, Pjt =

(
n jt

∑
i=1

P1−ρ

i jt

) 1
1−ρ

. (C.34)

Technology.—Firms enter by paying a sunk cost κ in units of labor and then obtain a one-time productivity

draw ϕi j ∼ G(z) in a random sector s. We assume G(z) to be pareto with tail parameters ξ .A firm’s gross

output is then

yi j = ϕi j

[
φ

1/θ v(θ−1)/θ

i j +(1−φ)1/θ x(θ−1)/θ

i j

]θ/(θ−1)
, (8)

where vi j is the firm’s value-added, a Cobb-Douglas composite of capital and labor,

vi = kα
i jl

1−α

i j . (9)

Input Demand.—Taking input prices as given, cost minimization gives the labor and capital demands:

Rtki jt = α

[(
Rt

α

)α( Wt

1−α

)1−α
]

vi jt (C.35)

Wt li jt = (1−α)

[(
Rt

α

)α( Wt

1−α

)1−α
]

vi jt , (C.36)

and the demand for value-added composite and materials are given by:

vi jt = φ

{
(Rt/α)α (Wt/(1−α))1−α

Ωt

}−θ

yi jt

ϕi jt
(C.37)

xi jt = (1−φ)

(
1

Ωt

)−θ yi jt

ϕi jt
, (C.38)

where Ωt is the input cost index:

Ωt =

φ

[(
Rt

α

)α( Wt

1−α

)1−α
]1−θ

+(1−φ)


1

1−θ

. (C.39)
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Marginal Cost.—We incorporate a temperature-induced productivity shock factor, γi j(Tt), which reduces

firm i’s baseline productivity ϕi jt to an effective level:

ϕ̃i jt(Tt) =
ϕi jt

γi j(Tt)
.

Consequently, marginal cost takes the form:

MCi jt =
Ωt

ϕ̃i jt(Tt)
= γi j(Tt)

Ωt

ϕi jt
. (C.40)

We assume γi j(T ∗) = 1 at the ideal temperature T ∗ and ∂γi j(Tt)/∂Tt > 0 for Tt > T ∗. Intuitively, higher

temperatures increase γi j(Tt), lowering a firm’s effective productivity and thus raising its marginal cost.

Profits.—Firm i’s profits at time t are given by:

πi jt = Pi jt yi jt − MCi jt yi jt . (C.41)

Firm pricing and markups.—Firms price as a markup over marginal cost:

Pi jt = µi jt ·MCi jt , µi jt =
εi jt

εi jt −1
, (C.42)

profit maximization under Cournot competition34 gives the firm-specific elasticity of demand as a decreasing

function of market share:

εi jt =

[
1
ρ
(1− si jt)+

1
η

si jt

]−1

. (C.43)

From the CES aggregator within-sectors Equations (C.33), market share can be expressed as:

si jt =
(Pi jt)

1−ρ

∑
ni jt
k=1(Pikt)1−ρ

=

(
Pi jt

Pjt

)1−ρ

(C.44)

We can then write firm markup as a function of market share

µi jt =
1

1−
[

1
ρ
(1− si jt)+

1
η

si jt

] (C.45)

and market share as a function of markup

si jt =
µ

1−ρ

i jt ϕ
ρ−1
i jt

∑
n jt
i=1 µ

1−ρ

i jt ϕ
ρ−1
i jt

(C.46)

Given a productivity distribution for sector j, Equations (C.45) and (C.46) form a system of 2n jt equations

that can allow us to solve for industry equilibrium market shares and markup.

34Under Bertrand: εi jt = ρ(1− si jt)+ηsi jt .. Both Bertrand and Cournot features size-decreasing elasticity.
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TFPR.— Firm TFPR by definition is

TFPRi jt ≡
Pi jt yi jt

F(ℓ,k,x)
= µi jt × Ωt , (C.47)

where µi jt is the firm-specific markup and Ωt is an aggregate cost index capturing wages and input prices.

Because Ωt is common to all firms at time t, cross-firm differences in TFPR stem from differences in markups

µi jt . In other words, heterogeneity in TFPR reflects heterogeneity in market power (i.e. markups), rather than

purely physical efficiency. 35 Furthermore, dispersion of TFPR therefore reflects the markup dispersion and

negatively correlates with Aggregate TFP.

Labor Shares.— Combining a firm’s labor demand from Equations (C.36) and (C.37) with markup pricing

(C.42), a firm’s labor share can be written as

Wt li jt

p jty jt
=

(1−α)ζt

µi jt
(C.48)

where ζt denotes the elasticity of output with respect to value-added,

ζt =
[φ/(1−φ)]

{
(Rt/α)α [Wt/(1−α)]1−α

}1−θ

1+[φ/(1−φ)]
{
(Rt/α)α [Wt/(1−α)]1−α

}1−θ
. (C.49)

This elasticity is common to all firms but in general varies over time. All cross-sectional variation in labor

shares is due to cross-sectional variation in markups µi jt .

Aggregate Productivity.— Let k jt , l jt , and x jt denote sector-level capital, labor, and materials, respectively.

These are the sums of ki jt , li jt , and xi jt over i within j. We can then write the gross output of sector j as

y jt = ϕ jtF
(
k jt , l jt ,x jt

)
(C.50)

where

F(k, l,x) =
[
φ

1/θ
(
k1−α

)(θ−1)/θ
+(1−φ)1/θ

(
x(θ−1)/θ

)]θ/(θ−1)
(C.51)

and where sector-level productivity satisfies

Sectoral productivity ϕ jt by definition of production function:

ϕ jt =

(
n jt

∑
i

qi jt

ϕi jt

)−1

. (C.52)

35Under this definition, a firm can have lower TFPQ (physical productivity) but still see higher TFPR if its markup µi jt grows
large enough to outweigh any shifts in Ωt . The aggregate cost index Ωt moves uniformly for all firms, so it does not create dispersion
across them—it only scales TFPR up or down together.
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, where qi jt is the relative size of firm i in sector j:

qi jt =
yi jt

y jt
(C.53)

and market share can be written as a function of relative sizes

si jt = q
ρ−1

ρ

i jt (C.54)

Aggregate Markup.— Let µ jt denote the sector-level markup, implicitly defined by the sector-level labor

share

WtL jt

p jty jt
=

(1−α)ζt

µ jt
. (C.55)

Combining the sector-level labor share with its firm-level counterpart (Equation (C.48)), we can write the

sales share of firm i in sector s as
pi jtyi jt

p jty jt
=

µi jt

µ jt
×

li jt

l jt
. (C.56)

When both sides are summed across firms, the sector-level markup can be written as a market share-

weighted harmonic average of firm-level markups:

µ jt =

(
n jt

∑
i=1

1
µi jt

si jt

)−1

. (C.57)

From either of these and the expression for sector-level productivity ϕ jt , we see that the sector-level markup

satisfies

p jt = µ jt ·
Ωt

ϕ jt
;

that is, the sector price index can be expressed as the sector-level markup over marginal cost.

Likewise, let M denote the aggregate, economy-wide markup. Following the same steps, this can be

written either as an employment-weighted arithmetic average or a sales-weighted harmonic average of sector-

level markups,

The aggregate markup is:

Mt =

(∫ 1

0

1
µ jt

s jt d j
)−1

. (C.58)

Markup Dispersion and Productivity.— To see how markup dispersion affects productivity, observe from

Equation (C.31) and Pt = 1 that sector size q jt =
y jt
Yt

satisfies q jt = p−η

jt , and since p jt = µ jtΩt/ϕ jt and

1 = MtΩt/Zt , we can write

qi jt =

(
µ jt

Mt

ϕt

ϕ jt

)−η

. (C.59)

Equation (C.59) shows how heterogeneous markup impact the relative size of the firm. Compare to a
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social planner whose allocation based on relative productivity only, in a decentralized equilibrium, the largest

firm (also high-markup firms) is too small. Furthermore, a shock that increase the productivity dispersion will

lead to greater markup heterogeneity, further increasing such misallocation forces.

Combining Equation (11) and (C.59), we have the sectoral productivity ϕ jt accounted for markup disper-

sion:

ϕ jt =

(
n jt

∑
i=1

(
µi jt

µ jt

)−ρ

ϕ
ρ−1
i jt

) 1
ρ−1

. (C.60)

Similarly, aggregate productivity is then:

ϕt =

(∫ 1

0

(
µ jt

Mt

)−η

ϕ
η−1
jt d j

) 1
η−1

. (C.61)

Entry and Exit.—Firms enter by paying a sunk cost κ in units of labor and then obtain a one-time pro-

ductivity draw zt(s)∼ G(z) in a randomly allocated sector s ∈ [0,1]. Let Nt =
∫ 1

0 nt(s)ds denote the aggregate

mass of firms, and let Mt =
∫ 1

0 mt(s)ds denote the aggregate mass of entrants.

With a continuum of sectors, entry per sector mt(s) is IID (independently and identically distributed)

Poisson, with rate parameter M∗
t . Firms operate in their sector, obtaining a stream of profits πt(s), until they

are hit with an IID exit shock, which happens with probability δ per period. For each sector s, we then have

n jt+1 = (1−δ )n jt +m jt

and hence the aggregate mass of firms evolves according to

Nt+1 = (1−δ )Nt +Mt .

Free-entry condition.—Firms enter by paying a sunk cost κWt and draw productivity δi jt from G(δ ). The

free-entry condition is:

κWt = βE
∞

∑
j=1

(1−δ ) j−1 Ct

ct+ j
πi jt . (C.62)

C.4.2 Equilibrium

Given an initial mass of firms n j0 per sector and an aggregate capital stock K0, an equilibrium is (i) a sequence

of firm prices pi j and allocations yi j, ki j, li j, xi j and (ii) aggregate gross output Y , consumption C, investment

I, materials X , labor L, wage rate W , rental rate R, and mass of entrants M, such that firms and consumers
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optimize and the labor, capital, and goods markets all clear. In particular,

Lt =
∫ 1

0
[

n jt

∑
i

li jt ]d j+κM (C.63)

Kt =
∫ 1

0
[

n jt

∑
i

ki jt ]d j (C.64)

Xt =
∫ 1

0
[

n jt

∑
i

xi jt ]d j (C.65)

Note that κM denotes labor used in the entry of new firms.

C.4.3 Consumption-equivalent Welfare Loss

Static welfare loss.—We derive a simple formula for the welfare losses from markups in a steady-state version

of our model. Suppose that the representative consumer has preferences

U(C,L) =
C1−σ

1−σ
− L1+ν

1+ν
(C.66)

Suppose also that labor is the only factor of production and that there is a representative firm with produc-

tion function Y = ϕL. Markups distort allocations by reducing aggregate productivity ϕ and by introduc-

ing a wedge M between the wage and marginal product of labor, W = ϕ/M . Labor supply is given by

Cσ Lν = W = ϕ/M . Using goods market clearing C = Y = ϕL, employment and consumption in the dis-

torted allocation are given by

L = M− 1
σ+ν ϕ

1−σ

σ+ν , C = M− σ

σ+ν ϕ
1+ν

σ+ν . (C.67)

The associated level of utility is

U(C,L) =
(

1
1−σ

− 1
1+ν

)
M− σ

σ+ν ϕ
(1+ν)(1−σ)

σ+ν . (C.68)

Let W denote the level of consumption solving U(W ,0) =U(C,L) for the distorted allocation, namely

W =

(
1− 1−σ

1+ν
M

) 1
1−σ

M− σ

σ+ν ϕ
1+ν

σ+ν . (C.69)

Similarly, let Wcc denote the level of consumption solving U(Wcc,0) = U(C,L) for the climate change

shock.

Wcc =

(
1− 1−σ

1+ν
Mcc

) 1
1−σ

Mcc
− σ

σ+ν ϕcc
1+ν

σ+ν . (C.70)

Hence the consumption-equivalent losses from climate change-induced reallocation and changed in markup

can be written as
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Wcc

W
=

((
1− 1−σ

1+ν
Mcc

)(
1− 1−σ

1+ν
M
) ) 1

1−σ (
ϕcc

ϕ

) 1+ν

σ+ν
(

Mcc

M

)− σ

σ+ν

. (C.71)

With logarithmic utility, σ → 1, as in the main text, this simplifies to

Wcc

W
=

(
ϕcc

ϕ

)(
Mcc

M

)− 1
1+ν

. (C.72)

The lower the new aggregate TFP ϕcc and the higher the new aggregate markup Mcc, the lower and

consumption and welfare, and therefore higher the consumption-equivalent welfare loss.

Aggregate welfare loss from climate change-induced reallocation is therefore:

1− Wcc

W
= 1−

(
ϕcc

ϕ

)(
Mcc

M

)− 1
1+ν

. (C.73)

The first ratio ϕcc
ϕ

represents the change in aggregate productivity under climate change productivity shock.

There are two reasons why climate change can lead to lower aggregate productivity (ϕcc < ϕ). The first

channel is the productivity effect: if all firms are negatively affected, so will the aggregate. The second

channel is the misallocation channel: climate-induced higher market power and markup can lead to less

efficient allocation of production input across firms and therefore greater misallocation.

The second ratio Mcc
M represent the "aggregate tax" of markups. If climate change leads to more realloca-

tion and higher market power, then aggregate markup will increase (Mcc > M ), further curbing overall labor

demand and aggregate output.

Role of Demand Assumption

In our baseline model with VES demand, climate change shocks affect the distribution of markups across

heterogeneous firms, ultimately altering both aggregate productivity ϕcc and the aggregate markup Mcc. This

reallocation channel is central to our results. A useful benchmark for comparison is a model with constant

elasticity of substitution (CES) demand, which is commonly adopted in quantitative analysis related to climate

change due to its tractability.

Under the CES specification, reallocation does not change markup dispersion nor the aggregate markup,

because each firm faces a residual demand elasticity that is constant and invariant to firm-level shocks. Specif-

ically, if σ denotes the elasticity of substitution at the variety level, the markup each firm charges is simply

µCES =
σ

σ −1
,

which is constant across all firms. Consequently, the only impact on aggregate variables under climate change

comes from the uniform shift in productivity levels. In other words, under CES, there is no additional misal-

location arising from changes in the distribution of markups across firms.

Our primary focus is on how climate shocks (or any size-dependent heterogeneous shocks) propagate

differently under these two demand assumptions, rather than on measuring any baseline (pre-shock) markup
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distortions. Under CES, the markup is uniform and remains unchanged when a shock hits, implying that any

variation in firm productivity does not alter either the dispersion of markups or the resulting misallocation.

In contrast, under VES, the demand elasticity (and hence each firm’s markup) can respond endogenously to

shocks, changing the distribution of markups. As a result, using CES may systematically underestimate the

overall welfare impact of climate change shocks, because it abstracts from the additional inefficiencies arising

from changes in markup dispersion and from an increase in the aggregate markup itself.

To illustrate the quantitative implications of these different market structures in the context of climate-

induced productivity shocks, we compare the consumption-equivalent welfare losses in each case. As before,

we measure welfare losses by the ratio of the distorted consumption level to some baseline reference. Under

VES, climate change raises the dispersion in markups (as high-productivity firms charge higher markups),

lowers aggregate productivity through both a productivity effect and a misallocation effect, and further reduces

aggregate output and consumption through a higher aggregate markup (a labor wedge). Under CES, welfare

losses come only from the uniform productivity drop, with no amplification via markups. Formally, let W CES
cc

be the welfare level under the CES assumption, and let W CES be the corresponding baseline welfare. Then

the consumption-equivalent welfare loss under CES is:

1 − W CES
cc

W CES = 1 −
(

ϕcc

ϕ

)
, (C.74)

which depends only on the change in aggregate productivity, ϕcc/ϕ , and not on any change in markups.

By construction, the CES benchmark shuts down the endogenous markup-dispersion channel. Any ad-

ditional welfare losses observed under the VES setup therefore reflect the reallocation of market shares to-

ward firms with higher markups, the accompanying reduction in aggregate TFP, and the rise in the aggregate

markup. In this way, comparing the VES and CES welfare losses highlights the importance of incorporating

endogenous markups into climate-change quantification.

Decomposition of the VES–CES Difference. To see why the difference between VES and CES can be

attributed to both TFP misallocation and an output-tax effect, consider the VES welfare loss:

1− Wcc

W
= 1 −

(
ϕcc

ϕ

) (
Mcc

M

)− 1
1+ν

.

Assuming ν = 1, the markup term enters as
(
Mcc/M

)−1/2. Hence a small percentage increase in Mcc/M

translates into roughly half that size of a percentage decrease in the product (ϕcc/ϕ)
(
Mcc/M

)−1/2. Sub-

tracting the CES expression in (C.74) from the VES expression above then gives an approximate decomposi-

tion:

[
Welfare LossVES −Welfare LossCES

]
≈
[
TFP lossVES −TFP lossCES

]︸ ︷︷ ︸
additional misallocation

+ 1
2 ×∆(markup)︸ ︷︷ ︸

aggregate markup (tax) effect

, (C.75)
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where ∆(markup) is the percentage change in the aggregate markup between the baseline and post-climate-

shock allocations.36

In short, a higher markup under VES both worsens misallocation and acts like an output tax that reduces

total employment and output. By neglecting this mechanism, CES underestimates the true welfare cost of

climate change shocks.

36Strictly speaking, (C.75) is a first-order approximation that holds exactly for small changes in Mcc/M , or in the limit as ν → 1.
For larger changes, second-order terms may appear, but the decomposition remains a good guide to the relative contributions of TFP
vs. markup.
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D Simulation of a single-industry heterogeneous temperature shock

This section presents a single-industry simulation to illustrate how a market-level temperature shock affects

market structure. Our results deliver two main insights: (1) a heterogeneous, productivity-reducing shock in-

creases within-industry productivity dispersion, and (2) this heightened dispersion widens the gap between

large and small firms, reallocating market shares toward the largest firm and thereby raising overall concen-

tration and markups. These findings are consistent with the theoretical predictions outlined in Section 3.2.2

and inform the design of our empirical analysis.

Simulation Setup The simulation setting directly follow section 3.2.2, incorporating a heterogeneous firms

model under endogenous markup. Demand features nested CES, with the within-industry elasticity of substi-

tution ρ higher than across-industry elasticity of substitution η . Firm level productivity ϕ are drawn from a

Pareto distribution with a shape parameter θ . We fix the set of model parameters throughout the simulation

and focus on the equilibrium behavior of a single market.

In this framework of endogenous markup, the distribution of productivity determines the distribution of

the relative prices, which in turn determines market shares and markup distribution. Two demand elasticity ρ

and η bounds the range of markup. Largest firm have the lowest relative prices, highest market shares, and

charges higher markup.

In order to model the impact of market-level temperature shock, we introduce the climate productivity

shifter γ , which is greater or equal to 137. Such shifter changes the effective productivity of firms:

ϕij,effective =
ϕi j

γi j
.

We also assume that the productivity shifter is heterogeneous and decreasing in productivity (γ(ϕ)′ < 0),

which captures the costly nature of adaptation and that larger firms are likely less affected by climate shocks.

Figure D2 summarizes the simulation result. Figure 2(a) to 2(c) shows the changes in three firm-level

outcomes: firm productivity, firm market share, and firm markups. We group firms within an industry into 20

productivity bins, increasing from left to right. Figure 2(a) shows the negative and productivity-decreasing

nature of the shock, by construction. Figure 2(b) shows the differential response of market share across firms

of different size bins: while many small to medium firms lose market shares, the largest firms gain significant

market shares. This shows a reallocation of shares from small to large firms. As market shares determine

equilibrium markup in our framework, figure 2(c) shows similar story for the markup change: largest firm

that gain market share can also charge higher markup, while small firms’ markup drop due to loss of market

share.

As for the aggregate impact of such heterogeneous shock, we see results consistent with predictions in

section 3.2.2. Figure 2(d) shows the changes in four aggregate outcomes: Aggregate Productivity, Produc-

tivity Dispersion, HHI, and Aggregate Markup. Given that the shocks are negative for all firms, aggregate

37This assumption is based on the overall negative productivity impact of temperature shock we observed in our sample, as well
as empirical evidence on the heterogeneous productivity impacts (Zivin and Kahn, 2016; Shi and Zhang, 2025; Somanathan et al.,
2021) . In this model of reallocation, homogeneous shock will not lead to reallocation and markup changes
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Figure D2: Simulation Result of a Productivity-Decreasing Shock
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(c) % Changes in Markup
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Notes: This figure reports the simulation result of a productivity-decreasing shock. Panel (a),(b), and (c) shows the change in key
firm-level outcomes, while Panel (d) summarizes changes in key aggregate outcomes. For the firm-level, we show the average
percentage changes in Productivity (a), absolute changes in Market Share(b), and percentage changes in Markup(c) across different
productivity bins resulting from a productivity-decreasing shock within a single market. On the horizontal axis of panel (a) to (c),
productivity(firm size) increases from left to right. We use absolute changes for market share in order to better highlight the
reallocation channel. Panel (d) shows the percentage change in aggregate TFP, TFP(log-normalized) dispersion, HHI, and aggregate
Markup.

productivity drops as expected. For the dispersion of within-industry productivity (which is calculated based

on normalized productivity in order to remove the level effect), although all firms are getting a negative shock,

the heterogeneous nature of the shock increases the relative gap between large and small firms, creating larger

dispersion. Such increase in productivity dispersion fuels the reallocation of market shares from small to large

firms, resulting in higher concentration and higher aggregate markup.
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Figure D3: Simulation Result of a Productivity-Decreasing Shock
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Notes: This figure reports the simulation result of a productivity-decreasing shock. Panel (a),(b), and (c) shows the change in key
firm-level outcomes, while Panel (d) summarizes changes in key aggregate outcomes. For the firm-level, we show the average
percentage changes in Productivity (a), absolute changes in Market Share(b), and percentage changes in Markup(c) across different
productivity bins resulting from a productivity-decreasing shock within a single market. On the horizontal axis of panel (a) to (c),
productivity(firm size) increases from left to right. We use absolute changes for market share in order to better highlight the
reallocation channel. Panel (d) shows the percentage change in aggregate TFP, TFP(log-normalized) dispersion, HHI, and aggregate
Markup.
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E Alternative Calibration

In this appendix, we detail our simulated method of moments (SMM) approach to calibrate the nested CES

framework, providing a consistency check for the baseline parameter values borrowed from the literature.

Following Edmond et al. (2023), we calibrate four parameters: the within-sector elasticity ρ , the across-

sector elasticity η , the Pareto shape parameter ξ , and the average number of firms N in each sector. These

parameters jointly determine the level and dispersion of markups in the model, as well as the degree of

market concentration. Intuitively, ρ and η govern how firm-level market shares translate into firm-level and

aggregate markups, ξ controls the extent of productivity dispersion (and thus sales concentration), and N

affects the intensity of competition within each sector.

We match four empirical moments to their model-implied counterparts. First, we target the top-4 and top-

20 concentration ratios observed in our data (calculated at the country-by-4-digit NACE industry level). A

lower ξ (i.e., a heavier Pareto tail) generates more skewed productivity draws, leading to higher concentration.

Second, we use an indirect inference approach to capture the relationship between firm-level markups and

market shares, leveraging the slope coefficient b̂ =−0.16 from a regression similar to Edmond et al. (2023).

From equation (9), we have
1

µi jt
=

(
1− 1

ρ

)
−
(

1
η
− 1

ρ

)
︸ ︷︷ ︸

b

si jt , (E.76)

where b̂ = −0.16 identifies the gap between 1
η

and 1
ρ

. Third, we ensure that the model’s sales-weighted

aggregate markup aligns with the empirical average. Finally, we choose N alongside the other parameters to

match overall patterns of concentration and markups.

Table G8 summarizes our calibration targets and the estimated parameter values under this oligopoly

setting. The model replicates both the aggregate markup and the markup–market-share coefficient closely,

indicating that the elasticities η and ρ are accurately pinned down.

Comparison with the Literature. Our within-sector elasticity ρ = 9.25 falls within the broad range of

5.21–59.69 reported by Edmond et al. (2023), which corresponds to their different calibration scenarios tar-

geting aggregate markups of 1.05 to 1.35. It is also somewhat higher than the 5.75 estimate in De Loecker

et al. (2021), yet remains consistent with the range of values typically used in nested CES models. Likewise,

our across-sector elasticity η = 1.21 aligns with the 1.0–1.62 range reported by Edmond et al. (2023) and is

close to the 1.20 estimate in De Loecker et al. (2021). Given that our observed aggregate markup is around

1.3, these elasticity estimates appear both internally consistent and broadly in line with previous studies of

oligopolistic competition under nested CES demand.

Overall, our SMM-based parameter estimates confirm that the chosen demand elasticities are robust to

the data and consistent with estimates in related literature. This exercise thus reinforces that our baseline

parameters—adapted from Edmond et al. (2023) and De Loecker et al. (2021)—are appropriate for analyzing

how climate-induced productivity shocks affect market concentration, markups, and welfare.
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F Additional Figures

Figure F1: Number of Observations by Country-Year

(a) Full sample

(b) Balanced sample

Notes: This figure presents the number of observations in the manufacturing sector sample for 12 European countries over the period
2000–2020. Panel (a) shows the full sample, which includes 5.06 million observations. Panel (b) restricts the sample to firms that
entered the dataset before 2000 and remained throughout the entire sample period.
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Figure F2: Effect of Temperature Change on Firm Exits
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Notes: This figure reports the effect of temperature change on firm exits by firm size. Coefficients are estimated from Equation (4)
with the dependent variable being a dummy that equals one if a firm exits the market in a given year between 2000 and 2020. The
labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue
distribution across all firms. Standard errors are two-way clustered at the firm and market-year levels. The blue bands show the 95%
confidence interval.

Figure F3: Effect of Temperature Change on Firm Labor
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Notes: This figure reports the effect of temperature change on labor usage by firm size. Coefficients are estimated from Equation (4)
with the dependent variable being the logarithm of the number of employees for each firm. The labels p10, p50, and p90 refer to firms
whose average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all firms. Standard
errors are two-way clustered at the firm and market-year levels. The blue bands show the 95% confidence interval.

Figure F4: Effect of Temperature Change on Firms Capital
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Notes: This figure reports the effect of temperature change on capital by firm size. Coefficients are estimated from Equation (4) with
the dependent variable being the logarithm of tangible fixed assets for each firm. The labels p10, p50, and p90 refer to firms whose
average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all firms. Standard errors
are two-way clustered at the firm and market-year levels. The blue bands show the 95% confidence interval.
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Figure F5: Effect of Temperature Change on Market Concentration (Country-NACE2)
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Notes: This figure reports the effect of the temperature change on market concentration. The coefficients are estimated from Equation
(1). The dependent variables are log(HHI) and log(CR4). A market is defined at the country-NACE2 industry level. The blue bands
show the 95% confidence interval. Standard errors are two-way clustered at the country-year and market levels.

Figure F6: Heterogeneous Effects of Temperature Change on Firm Market Share (Country-NACE2)

−0.01

0.00

0.01

0.02

10 30 50 70 90 110
Daily Maximum Temperature (°F)

ln
(M

ar
ke

t s
ha

re
)

Small (p10)

−0.01

0.00

0.01

0.02

10 30 50 70 90 110
Daily Maximum Temperature (°F)

ln
(M

ar
ke

t s
ha

re
)

Medium (p50)

−0.01

0.00

0.01

0.02

10 30 50 70 90 110
Daily Maximum Temperature (°F)

ln
(M

ar
ke

t s
ha

re
)

Large (p90)

Notes: This figure reports the heterogeneous effects of temperature change on firm market share by firm size. Coefficients are
estimated from Equation (4) with the dependent variable log of market share. The labels p10, p50, and p90 refer to firms whose
average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all firms. A market
is defined at the country-NACE2 industry level. The blue bands show the 95% confidence interval. Standard errors are two-way
clustered at the firm and market-year levels.
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Figure F7: Heterogeneous Effects of Temperature Change on Firm Productivity (Country-NACE2)
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Notes: This figure reports the heterogeneous effects of the temperature change on firm productivity by firm size. The labels p10, p50,
and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution
across all firms. A market is defined at the country-NACE2 industry level. Standard errors are two-way clustered at the firm and
market-year levels. The blue bands show the 95% confidence interval.

Figure F8: Heterogeneous Effects of Temperature Change on Firm Markup (Country-NACE2)
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Notes: This figure reports the heterogeneous effects of temperature changes on firm markup by firm size. Coefficients are estimated
from Equation (4) with the dependent variable as the log of markup. The labels p10, p50, and p90 refer to firms whose average
revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all firms. A market is defined at
the country-NACE2 industry level. Standard errors are two-way clustered at the firm and market-year levels. The blue bands show
the 95% confidence interval.

Figure F9: Heterogeneous Effects of Temperature Change on Market Share (Full Sample)
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Notes: This figure reports the heterogeneous effects of temperature change on firm market share by firm size. The labels p10, p50,
and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution
across all firms. The blue bands show the 95% confidence interval.
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Figure F10: Heterogeneous Effects of Temperature Change on Firm Productivity (Full Sample)
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Notes: Panels (a) to (d) show the heterogeneous effects of temperature change on firm TFP by firm size. The labels p10, p50, and p90
refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all
firms. Standard errors are two-way clustered at the firm and market-year levels. The blue bands show the 95% confidence interval.

Figure F11: Heterogeneous Effects of Temperature Change on Firm Markup (Full Sample)
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Notes: The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of
the revenue distribution across all firms. The blue bands show the 95% confidence interval.
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Figure F12: Effect of Temperature Change on Market Concentration
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Notes: This figure reports the effect of temperature changes on market concentration. The coefficients are estimated from Equation
(1), using the temperature bin specification for the response function. Daily maximum temperatures are grouped into eight 10-degree
Fahrenheit bins: <30◦F, 30–40◦F, 40–50◦F, 50–60◦F, 60–70◦F, 70–80◦F, 80–90◦F, and 90◦F. Each bin represents the number of days
in a year that a firm experiences a daily maximum temperature within that range. The 50–60◦F bin is omitted in the regressions as the
reference category. The market is defined at the country-NACE4 industry level. The blue bands show the 95% confidence interval.
Standard errors are two-way clustered at the country-year and market levels.

Figure F13: Heterogeneous Effects of Temperature Change on Market Share
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Notes: This figure reports the heterogeneous effects of temperature change on market share by firm size. Coefficients are estimated
from Equation (4) with the dependent variable log of market share, using the temperature bin specification for the response func-
tion. Daily maximum temperatures are grouped into eight 10-degree Fahrenheit bins: <30◦F, 30–40◦F, 40–50◦F, 50–60◦F, 60–70◦F,
70–80◦F, 80–90◦F, and 90◦F. Each bin represents the number of days in a year that a firm experiences a daily maximum temperature
within that range. The 50–60◦F bin is omitted in the regressions as the reference category. The labels p10, p50, and p90 refer to firms
whose average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all firms. Standard
errors are two-way clustered at the country-year and market levels. The blue bands show the 95% confidence interval.
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Figure F14: Average Effect of Temperature Change on Firm Productivity

(a) TFPR
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(b) TFPQ
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Notes: Panel (a) and Panel (b) show the average effect of temperature change on firm TFPR and TFPQ, respectively. Coefficients
are estimated from Equation (19) with the dependent variable being the log of firm TFPR and TFPQ. Standard errors are two-way
clustered at the firm and market-year levels. The blue bands show the 95% confidence interval.

Figure F15: Heterogeneous Effects of Temperature Change on Firm Productivity
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Notes: This figure shows the heterogeneous effects of temperature change on firm TFPQ by size. Coefficients are estimated from
Equation (4), using the temperature bin specification for the response function. Daily maximum temperatures are grouped into eight
10-degree Fahrenheit bins: <30◦F, 30–40◦F, 40–50◦F, 50–60◦F, 60–70◦F, 70–80◦F, 80–90◦F, and 90◦F. Each bin represents the
number of days in a year that a firm experiences a daily maximum temperature within that range. The 50–60◦F bin is omitted in
the regressions as the reference category. The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th,
and 90th percentiles, respectively, of the revenue distribution across all firms. Standard errors are two-way clustered at the firm and
market-year levels. The blue bands show the 95% confidence interval.
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Figure F16: Heterogeneous Effects of Temperature Change on Firm Markup
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Notes: This figure reports the heterogeneous effects of temperature changes on firm markup. Coefficients are estimated from Equation
(4), using the temperature bin specification for the response function. Daily maximum temperatures are grouped into eight 10-degree
Fahrenheit bins: <30◦F, 30–40◦F, 40–50◦F, 50–60◦F, 60–70◦F, 70–80◦F, 80–90◦F, and 90◦F. Each bin represents the number of days
in a year that a firm experiences a daily maximum temperature within that range. The 50–60◦F bin is omitted in the regressions as the
reference category. The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles,
respectively, of the revenue distribution across all firms. Standard errors are two-way clustered at the firm and market-year levels.
The blue bands show the 95% confidence interval.

Figure F17: Heterogeneous Effects of Temperature Change on Market Share
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Notes: This figure reports the heterogeneous effects of temperature changes on firm market share. The coefficients are estimated from
Equation (4), where the temperature response function is specified as a fourth-order polynomial of the annual sum of daily maximum
temperatures. The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles,
respectively, of the revenue distribution across all firms. Standard errors are two-way clustered at the firm and market-year levels.
The blue bands show the 95% confidence interval.
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Figure F18: Heterogeneous Effects of Temperature Change on Firm Productivity
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Notes: This figure reports the heterogeneous effects of temperature changes on firm TFPQ. The coefficients are estimated from
Equation (4), where the temperature response function is specified as a fourth-order polynomial of the annual sum of daily maximum
temperatures. The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles,
respectively, of the revenue distribution across all firms. Standard errors are two-way clustered at the firm and market-year levels.
The blue bands show the 95% confidence interval.

Figure F19: Heterogeneous Effects of Temperature Change on Firm Markup
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Notes: This figure reports the heterogeneous effects of temperature changes on firm markup. The coefficients are estimated from
Equation (4), where the temperature response function is specified as a fourth-order polynomial of the annual sum of daily maximum
temperatures. The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles,
respectively, of the revenue distribution across all firms. Standard errors are two-way clustered at the firm and market-year levels.
The blue bands show the 95% confidence interval.

A-34



Figure F20: Average Effect of Temperature Change on Firm Productivity
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(b) TFPQ
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Notes: Panel (a) and Panel (b) show the average effect of temperature change on firm TFPR and relative TFPQ, respectively. Coeffi-
cients are estimated from Equation (4) with the dependent variable being the log of firm TFPR and relative TFPQ. TFRP is estimated
from the translog production function, and relative TFPQ is calculated with the estimated markup from the translog production func-
tion and the market share using Equation (18). Standard errors are two-way clustered at the firm and market-year levels. The blue
bands show the 95% confidence interval.

Figure F21: Heterogeneous Effects of Temperature Change on Firm Productivity
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Notes: This figure shows the heterogeneous effects of temperature change on firm relative TFPQ by size. Coefficients are estimated
from Equation (4). Relative TFPQ is calculated with the estimated markup from the translog production function and the market share
using Equation (18). The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th, and 90th percentiles,
respectively, of the revenue distribution across all firms. Standard errors are two-way clustered at the firm and market-year levels.
The blue bands show the 95% confidence interval.
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Figure F22: Average Effect of Temperature Change on Firm Markup
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Notes: This figure shows the average effect of temperature change on firm markup. Coefficients are estimated from Equation (19)
with the dependent variable being the log of firm markup estimated from the translog production function, controlling for second
order polynomial of input costs. Standard errors are two-way clustered at the firm and market-year levels. The blue bands show the
95% confidence interval.

Figure F23: Heterogeneous Effects of Temperature Change on Firm Markup
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Notes: This figure shows the heterogeneous effects of temperature change on firm markup by size. Coefficients are estimated from
Equation (4), with the dependent variable being the log of firm markup estimated from the translog production function, controlling
for second order polynomial of input costs. The labels p10, p50, and p90 refer to firms whose average revenue falls at the 10th, 50th,
and 90th percentiles, respectively, of the revenue distribution across all firms. Standard errors are two-way clustered at the firm and
market-year levels. The blue bands show the 95% confidence interval.
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Figure F24: Effect of Temperature Change on Market Concentration in China
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Notes: This figure reports the effect of temperature changes on market concentration in China. The coefficients are estimated from
Equation (1). The market is defined at the China 4-digit industry level. The blue bands show the 95% confidence interval. Standard
errors are two-way clustered at the country-year and market levels.

Figure F25: Heterogeneous Effects of Temperature Change on Firm Market Share in China
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Notes: This figure shows the heterogeneous effects of temperature change on firm market share by size. Coefficients are estimated
from Equation (4). The market is defined at the China 4-digit industry level. The labels p10, p50, and p90 refer to firms whose
average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all firms. Standard errors
are two-way clustered at the firm and market-year levels. The blue bands show the 95% confidence interval.
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Figure F26: Average Effect of Temperature Change on Firm TFPR in China
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Notes: This figure shows the average effect of temperature change on firm productivity. Coefficients are estimated from Equation (4)
with the dependent variable being the log of firm TFPR. Standard errors are two-way clustered at the firm and market-year levels.
The blue bands show the 95% confidence interval.

Figure F27: Heterogeneous Effects of Temperature Change on Firm Productivity in China
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Notes: This figure shows the heterogeneous effects of temperature change on firm relative TFPQ by size. Coefficients are estimated
from Equation (4). Relative TFPQ is calculated with the estimated markup from the CD production function and the market share
using Equation (18). The market is defined at the China 4-digit industry level. The labels p10, p50, and p90 refer to firms whose
average revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all firms. Standard errors
are two-way clustered at the firm and market-year levels. The blue bands show the 95% confidence interval.
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Figure F28: Average Effect of Temperature Change on Firm Markup in China
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(b) Control for measurement error

−0.003

−0.002

−0.001

0.000

0.001

0.002

10 20 30 40 50 60 70 80 90 100 110
Daily Maximum Temperature (°F)

ln
(M

ar
ku

p)
Notes: This figure shows the average effect of temperature change on firm markup. Coefficients are estimated from Equation (19)
with the dependent variable being the log of firm markup. Panel (a) does not control for order polynomial of input costs, while Panel
(b) controls for second order polynomial of input costs. Standard errors are two-way clustered at the firm and market-year levels. The
blue bands show the 95% confidence interval.

Figure F29: Heterogeneous Effects of Temperature Change on Firm Markup in China
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Notes: This figure shows the heterogeneous effects of temperature change on firm markup by size. Coefficients are estimated from
Equation (4), with the dependent variable being the log of firm markup. The labels p10, p50, and p90 refer to firms whose average
revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across all firms. Standard errors are
two-way clustered at the firm and market-year levels. The blue bands show the 95% confidence interval.
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Figure F30: Effect of Temperature Change on Market Concentration in India
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Notes: This figure reports the effect of temperature changes on market concentration in India. The coefficients are estimated from
Equation (1). The market is defined at the 4-digit industry level. The blue bands show the 95% confidence interval. Standard errors
are two-way clustered at the year and market levels.

Figure F31: Heterogeneous Effects of Temperature Change on Firm Market Share in India
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Notes: This figure shows the heterogeneous effects of temperature change on firm market share by size. Coefficients are estimated
from Equation (4), controlling for state and market-year fixed effects. The market is defined at the 4-digit industry level. The labels
p10, p50, and p90 refer to firms whose revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution
across all firms. Standard errors are two-way clustered at the state and market-year levels. The blue bands show the 95% confidence
interval.
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Figure F32: Average Effect of Temperature Change on Firm TFPR in India
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Notes: This figure shows the average effect of temperature change on firm productivity. Coefficients are estimated from Equation (4)
with the dependent variable being the log of firm TFPR. Standard errors are two-way clustered at the state and market-year levels.
The blue bands show the 95% confidence interval.

Figure F33: Heterogeneous Effects of Temperature Change on Firm Productivity in India
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Notes: This figure shows the heterogeneous effects of temperature change on firm TFPR by size. Coefficients are estimated from
Equation (4), controlling for state and market-year fixed effects. The market is defined at the 4-digit industry level. The labels p10,
p50, and p90 refer to firms whose revenue falls at the 10th, 50th, and 90th percentiles, respectively, of the revenue distribution across
all firms. Standard errors are two-way clustered at the state and market-year levels. The blue bands show the 95% confidence interval.
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G Additional Tables

Table G1: Correlation between Productivity, Market Share, and Markup

Dep. Var.: Log(Market Share) Log(Markup)
(1) (2)

Log(TFP) 0.1609∗∗∗ 1.303∗∗∗

(0.0266) (0.0274)

Firm FE Yes Yes
Country-year FE Yes Yes
NACE2-year FE Yes Yes
Observations 31,125,699 31,125,699

Notes: Standard-errors in parentheses are clustered at the country-NACE 4-digit industry level. ***: 0.01, **: 0.05, *: 0.1.

Table G2: Effect of Contemporaneous Temperature Change on Market Concentration

Log(HHI) Log(CR4) Log(CR8)

(1) (2) (3)

ACDD (’000) 0.2083∗ 0.0886∗∗ 0.0719∗∗

(0.1060) (0.0424) (0.0306)
AHDD (’000) 0.0174 0.0171 0.0169

(0.0724) (0.0254) (0.0174)

Observations 51,041 51,041 51,041
Market FE ✓ ✓ ✓
Year FE ✓ ✓ ✓

Notes: AHDD and ACDD denote the annual sum of heating degree days (below 40°F) and that of cooling degree days (above 80°F)
based on daily maximum temperature. AHDD=∑

365
d=1(Td −80)∗1(Td > 80) and ACDD=∑

365
d=1(40−Td)∗1(Td < 40), where Td is the

daily maximum temperature. ACDD and AHDD are divided by 1000 to make the results more readable. Standard errors are two-way
clustered at the country-year and market levels. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table G3: Average Effect of Temperature on Productivity and Markups

Log(TFPR) Log(TFPQ) Log(Markup)

(1) (2) (3)
ACDD(’000) -0.0110∗∗ -0.0064∗∗ 0.0023∗

(0.0049) (0.0027) (0.0014)
AHDD(’000) -0.0161∗ -0.0066 -0.0025

(0.0083) (0.0042) (0.0023)

Observations 1,065,260 1,065,260 1,065,260
Polynomials of precipitation Y Y Y
Polynomials of input costs Y
Establishment FE Y Y Y
Market-year FE Y Y Y

Notes: This table reports the average effect of temperature change on establishment productivity and markups. AHDD and ACDD
denote the annual sum of heating degree days (below 40°F) and that of cooling degree days (above 80°F) based on daily maximum
temperature. AHDD and ACDD are divided by 1000 to make the results more readable. For all regressions, we control for second-
order polynomials of precipitation. Column (3) further controls for second order polynomials of labor and material costs. Standard
errors are clustered at the firm and market-year level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table G4: Heterogeneous Effects by Firm Size

Market Share Log(TFPQ) Log(Markup)

(1) (2) (3)
ACDD(’000) -1.762∗∗∗ -0.3279∗∗∗ -0.0727∗∗∗

(0.0975) (0.0245) (0.0121)
AHDD(’000) 0.4031∗∗∗ 0.0276 -0.0118

(0.0719) (0.0204) (0.0119)
ACDD(’000) × ln(Rev) 0.1165∗∗∗ 0.0217∗∗∗ 0.0051∗∗∗

(0.0065) (0.0016) (0.0008)
AHDD(’000) × ln(Rev) -0.0288∗∗∗ -0.0021∗ 0.0007

(0.0046) (0.0013) (0.0007)

Observations 1,065,260 1,065,260 1,065,260
Polynomials of precipitation Y Y Y
Polynomial of input costs Y
Establishment FE Y Y Y
Market-year FE Y Y Y

Notes: This table reports the heterogeneous effects of temperature on market share, productivity, and markups. AHDD and ACDD
denote the annual sum of heating degree days (below 40°F) and that of cooling degree days (above 80°F) based on daily maximum
temperature. AHDD and ACDD are divided by 1000 to make the results more readable. Rev denotes the average revenue of an
establishment during the sample period. For column (3), we control for second order polynomials of labor and material costs.
Standard errors are two-way clustered at the firm and market-year levels. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table G5: Summary Statistics by Firm Size for the Balanced Sample

Firm size Number of employees Tangible fixed assets($) Revenue($)
10th Pct. 5.67 4222 512358
50th Pct. 12.4 323185 3774366
90th Pct. 76.7 5997518 33261439

Notes: This table presents the values for the number of employees, tangible fixed assets and operating revenue for three establishments
at the 10th, 50th, and 90th percentile of the average revenue distribution across all establishments.

Table G6: Heterogeneous Effects on Productivity by Establishment Age

Dep. var. Log(TFPQ)

Before 2005 After 2005
(1) (2)

ACDD(’000) -0.1668∗∗∗ -0.4409∗∗∗

(0.0177) (0.0415)
AHDD(’000) 0.0577∗∗∗ 0.2325∗∗∗

(0.0160) (0.0306)
ACDD(’000) × ln(Rev) 0.0113∗∗∗ 0.0322∗∗∗

(0.0012) (0.0030)
AHDD(’000) × ln(Rev) -0.0039∗∗∗ -0.0170∗∗∗

(0.0010) (0.0020)

Observations 3,772,085 1,270,348

Establishment FE ✓ ✓
Market-year FE ✓ ✓

Notes: This table reports the heterogeneous effects of temperature shocks on establishment productivity. We divide the full sample
into two subsamples: establishments that entered the market before 2005 and those that entered after 2005. AHDD and ACDD
denote the annual sum of heating degree days (below 40°F) and that of cooling degree days (above 80°F) based on daily maximum
temperature. Rev denotes the average revenue of an establishment during the sample period. Columns (1) and (2) present coefficients
estimated from Equation (4) for each subsample, respectively. Standard errors are two-way clustered at the establishment and market-
year levels. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table G7: Assigned Parameters

Parameter Value
Discount factor, β 0.96
Depreciation rate, δ 0.06
Exit rate, ϕ 0.04
Elasticity of value-added to capital, α

1
3

Elasticity of labor supply, ν 1
Elasticity of substitution between value-added and materials, θ 0.5

Notes: This table shows the assigned parameters that are fixed through the quantification exercise. We directly use the parameters
values of Table 1 in Edmond et al. (2023).
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Table G8: Model Calibration

Data Prediction

Calibration targets:
Aggregate markup, M 1.29 1.29
Top-4 sales share, CR4 0.67 0.64
Top-20 sales share, CR20 0.86 0.90
Regression coefficient, b̂ -0.16 -0.16

Parameter Estimates:
Pareto tail, ξ 4.42
Elasticity of substitution within sectors, ρ 9.25
Elasticity of substitution between sectors, η 1.21
Average number of firms per sector, N 115

Notes: This table reports our calibrated target and parameters values. We calibrate the Pareto tail ξ and the within- and between-sector
elasticities of substitution ρ and η to match the empirical targets on markups and concentration. b̂ is the coefficient on market share
of regression based on Equation (E.76) and is used to pin down the gap between ρ and η .

Table G9: Decomposition of changes in Country Aggregate Markup

Country Markup Change Within Component Between Component Cross Component

France 0.215 0.132 0.081 0.003
Spain 0.207 0.124 0.080 0.004

Belgium 0.076 0.045 0.030 0.001
Germany 0.068 0.049 0.019 0.0004
Estonia 0.050 0.032 0.017 0.0004

Italy 0.027 -0.004 0.026 0.005
Poland 0.024 0.016 0.009 0.0001
Finland 0.020 0.005 0.015 0.0003

Denmark -0.001 -0.001 -0.0003 0
Croatia -0.021 -0.016 -0.007 0.001

Slovakia -0.022 -0.015 -0.007 0.0001
Hungary -0.059 -0.040 -0.020 0.0005

Notes: This table decomposes the percentage change in country-specific markup into Between, Within, and Cross Component. We
first decompose the sector (county by NACE 4-digit) aggregate markup based on: ∆µ j = ∑i ωi j (µ

cc
i j −µi j) + ∑i µi j (ω

cc
i j −ωi j) +

∑i(ω
cc
i j −ωi j)(µ

cc
i j −µi j), where µcc and ωcc are the new firm-level markup and market share after the Climate Change Shock. The

sector level decomposition is then further aggregated into country level using the equilibrium sector share.
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